Klingenberg | Lineare Algebra und Geometrie | E-Book | sack.de
E-Book

E-Book, Deutsch, 293 Seiten, eBook

Reihe: Hochschultext

Klingenberg Lineare Algebra und Geometrie


2. Auflage 1990
ISBN: 978-3-642-97209-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, 293 Seiten, eBook

Reihe: Hochschultext

ISBN: 978-3-642-97209-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Aus den Besprechungen: "Dieses gehaltvolle Buch ... ist je zur Hälfte der linearen Algebra und der klassischen Geometrie gewidmet. Neben dem Standardmaterial der linearen Algebra werden auch eingehend die Jordansche Normalform und deren Anwendung auf die Lösung von Systemen linearer Differentialgleichungen mit konstanten Koeffizienten und, ausführlicher als üblich, einiges aus der Hilberttheorie behandelt." Internationale Mathematische Nachrichten #1 ^ ***BEMERKUNGEN*** Für die zweite Auflage dieser modernen Einführung in die Lineare Algebra und klassische Geometrie wurden einige Beweise übersichtlicher gestaltet und Übungsaufgaben am Ende jedes Kapitels eingefügt.
Klingenberg Lineare Algebra und Geometrie jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Allgemeine Grundbegriffe.- 1.1 Mengen und Abbildungen.- 1.2 Gruppen.- 1.3 Gruppenmorphismen.- 1.4 Äquivalenzrelationen und Quotientengruppen.- 1.5 Ringe und Körper.- 2 Vektorräume.- 2.1 Moduln und Vektorräume.- 2.2 Lineare Abbildungen.- 2.3 Erzeugendensysteme und freie Systeme.- 2.4 Basissysteme.- 2.5 Endlichdimensionale Vektorräume.- 2.6 Lineare Komplemente.- 3 Matrizen.- 3.1 Vektorräume linearer Abbildungen.- 3.2 Dualräume.- 3.3 Die transponierte Abbildung.- 3.4 Matrizen.- 3.5 Das Matrizenprodukt.- 3.6 Der Rang.- 4 Lineare Gleichungen und Determinanten.- 4.1 Lineare Gleichungssysteme.- 4.2 Das Gaußsche Eliminationsverfahren.- 4.3 Die symmetrische Gruppe.- 4.4 Determinanten.- 4.5 Der Determinantenentwicklungssatz 65.- 5 Eigenwerte und Normalformen.- 5.1 Eigenwerte.- 5.2 Normalformen. Elementare Theorie.- 5.3 Der Satz von Hamilton-Cayley.- 5.4 Die Jordan-Normalform.- 5.5 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten (komplexer Fall).- 5.6 Die Jordan-Normalform über ?.- 5.7 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten (reeller Fall).- 6 Metrische Vektorräume.- 6.1 Unitäre Vektorräume.- 6.2 Normierte Vektorräume.- 6.3 Hilberträume.- 6.4 Lineare Operatoren. Die unitäre Gruppe.- 6.5 Hermitesche Formen.- 7 Affine Geometrie.- 7.1 Der affine Raum.- 7.2 Affinitäten und Kollineationen. Der Fundamentalsatz.- 7.3 Lineare Funktionen.- 7.4 Affine Quadriken.- 8 Euklidische Geometrie.- 8.1 Der affin-unitäre Raum.- 8.2 Lineare und quadratische Funktionen.- 8.3 Der Winkel.- 8.4 Anhang: Quaternionen und SO (3), SO (4).- 8.5 Dreieckslehre.- 8.6 Kegelschnitte.- 9 Projektive Geometrie.- 9.1 Der projektive Raum.- 9.2 Die projektive Erweiterung eines affinen Raumes.- 9.3 Anhang: Allgemeine projektive und affine Ebenen.- 9.4 DasDoppelverhältnis. Der Satz von v. Staudt.- 9.5 Quadriken und Polaritäten.- 10 Nichteuklidische Geometrie.- 10.1 Der hyperbolische Raum.- 10.2 Das konforme Modell des hyperbolischen Raumes.- 10.3 Elliptische Geometrie.- 10.4 Das konforme Modell des elliptischen Raumes.- 10.5 Cliffordparallelen.- 10.6 Sphärische Geometrie und Dreieckslehre.- Literaturhinweise.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.