Khovanskii | Galois Theory, Coverings, and Riemann Surfaces | Buch | 978-3-642-38840-8 | sack.de

Buch, Englisch, 81 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 319 g

Khovanskii

Galois Theory, Coverings, and Riemann Surfaces


2013
ISBN: 978-3-642-38840-8
Verlag: Springer

Buch, Englisch, 81 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 319 g

ISBN: 978-3-642-38840-8
Verlag: Springer


The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author.

All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.

Khovanskii Galois Theory, Coverings, and Riemann Surfaces jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Chapter 1 Galois Theory: 1.1 Action of a Solvable Group and Representability by Radicals.- 1.2 Fixed Points under an Action of a Finite Group and Its Subgroups.- 1.3 Field Automorphisms and Relations between Elements in a Field.- 1.4 Action of a k-Solvable Group and Representability by k-Radicals.- 1.5 Galois Equations.- 1.6 Automorphisms Connected with a Galois Equation.- 1.7 The Fundamental Theorem of Galois Theory.- 1.8 A Criterion for Solvability of Equations by Radicals.- 1.9 A Criterion for Solvability of Equations by k-Radicals.- 1.10 Unsolvability of Complicated Equations by Solving Simpler Equations.- 1.11 Finite Fields.- Chapter 2 Coverings: 2.1 Coverings over Topological Spaces.- 2.2 Completion of Finite Coverings over Punctured Riemann Surfaces.- Chapter 3 Ramified Coverings and Galois Theory:  3.1 Finite Ramified Coverings and Algebraic Extensions of Fields of Meromorphic Functions.- 3.2 Geometry of Galois Theory for Extensions of a Field of Meromorphic Functions.- References.- Index


Askold Khovanskii is a Professor of Mathematics at the University of Toronto, and a principal researcher at the RAS Institute for Systems Analysis (Moscow, Russia). He is a founder of Topological Galois Theory and the author of fundamental results in this area.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.