Kennel | Beitrag zu iterativ lernenden modellprädiktiven Regelungen | Buch | 978-3-8325-4462-1 | sack.de

Buch, Deutsch, Band 13, 202 Seiten, PB, Format (B × H): 145 mm x 210 mm

Reihe: Forschungsberichte aus dem Lehrstuhl für Regelungssysteme

Kennel

Beitrag zu iterativ lernenden modellprädiktiven Regelungen


Erscheinungsjahr 2017
ISBN: 978-3-8325-4462-1
Verlag: Logos Berlin

Buch, Deutsch, Band 13, 202 Seiten, PB, Format (B × H): 145 mm x 210 mm

Reihe: Forschungsberichte aus dem Lehrstuhl für Regelungssysteme

ISBN: 978-3-8325-4462-1
Verlag: Logos Berlin


In der Industrie laufen viele Prozesse zyklisch und damit wiederholend ab. Eine hohe Regelgüte ist hierbei unabdingbar. Daher kommen iterativ lernende Regelungsmethoden zum Einsatz, welche die Regelung des Prozesses zyklisch verbessern.

In dieser Dissertation werden iterativ lernende modellprädiktive Regelungsverfahren vorgestellt. Die entwickelten Methoden ermöglichen durch ihre modellbasierte Struktur eine zyklische Steigerung der Regelgüte bei gleichzeitiger Berücksichtigung der Systembeschränkungen. Zyklische unbekannte Störungen und Dynamiken lassen sich hiermit iterativ erlernen und unterdrücken. Eine Robustifizierung der Verfahren gegenüber Messrauschen sowie Unsicherheiten wird in dieser Arbeit aufgezeigt.

Rechenzeit und Speicherbedarf stellen die größten Herausforderungen der optimierungsbasierten Verfahren dar. Verschiedene effiziente Ansätze zur Reduktion von Speicher- und Rechenbedarf werden in der Dissertation dargelegt.

In den optimierungsbasierten Entwurf lassen sich weitere Optimierungsziele einbinden. Gerade für industrielle Prozesse stellt eine Reduktion des Energiebedarfs sowie eine Reduktion der Prozesszeiten ein wichtiges Optimierungskriterium dar. Diese Kriterien können in einfacher Weise in die entwickelten Verfahren integriert werden. Je nach Prozess sind Energieeinsparungen von über 50% realisierbar. Die Prozesszeiten lassen sich teilweise mehr als halbieren. Die Verfahren selbst wurden an drei Beispielsystemen praktisch erprobt. Die Ergebnisse sind zufriedenstellend und für die Industrie von praktischer Relevanz.

Kennel Beitrag zu iterativ lernenden modellprädiktiven Regelungen jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.