Kassner | Fundamentals of Creep in Metals and Alloys | E-Book | sack.de
E-Book

E-Book, Englisch, 356 Seiten

Kassner Fundamentals of Creep in Metals and Alloys

E-Book, Englisch, 356 Seiten

ISBN: 978-0-08-099432-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Although the present edition of Fundamentals of Creep in Metals and Alloys remains broadly up to date for metals, there are a range of improvements and updates that are either desirable, or required, in order to ensure that the book continues to meet the needs of researchers and scholars in the general area of creep plasticity. Besides updating the areas currently covered in the second edition with recent advances, the third edition will broaden its scope beyond metals and alloys to include ceramics, covalent solids, minerals and polymers, thus addressing the fundamentals of creep in all basic classes of materials. - Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials - Transmission electron micrographs provide direct insight into the basic microstructure of metals deforming at high temperatures - Extensive literature review of about 1000 references provides an excellent overview of the field

Dr. Kassner is a professor in the department of Aerospace and Mechanical Engineering at the University of Southern California in Los Angeles. He holds M.S.and Ph.D. degrees in Materials Science and Engineering from Stanford University, has published two books and more than 200 articles and book chapters in the areas of metal plasticity theory, creep, fracture, phase diagrams, fatigue, and semi-solid forming, and currently serves on the editorial board of Elsevier's International Journal of Plasticity.
Kassner Fundamentals of Creep in Metals and Alloys jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Fundamentals of Creep in Metals and Alloys;4
3;Copyright;5
4;CONTENTS;6
5;PREFACE;12
6;LIST OF SYMBOLS AND ABBREVIATIONS;14
7;Chapter 1 - Fundamentals of Creep in Materials;20
7.1;1. INTRODUCTION;20
8;Chapter 2 - Five-Power-Law Creep;26
8.1;1. MACROSCOPIC RELATIONSHIPS;27
8.2;2. MICROSTRUCTURAL OBSERVATIONS;47
8.3;3. RATE-CONTROLLING MECHANISMS;85
8.4;4. OTHER EFFECTS ON FIVE-POWER-LAW CREEP;110
9;Chapter 3 - Diffusional Creep;122
10;Chapter 4 - Harper-Dorn Creep;128
10.1;1. INTRODUCTION;128
10.2;2. THEORIES FOR HARPER-DORN;134
10.3;3. MORE RECENT DEVELOPMENTS;140
10.4;4. OTHER MATERIALS FOR WHICH HARPER-DORN HAS BEEN SUGGESTED;144
10.5;5. SUMMARY;147
11;Chapter 5 - The 3-Power-Law Viscous Glide Creep;148
12;Chapter 6 - Superplasticity;158
12.1;1. INTRODUCTION;158
12.2;2. CHARACTERISTICS OF FSS;159
12.3;3. MICROSTRUCTURE OF FINE-STRUCTURE SUPERPLASTIC MATERIALS;163
12.4;4. TEXTURE STUDIES IN SUPERPLASTICITY;164
12.5;5. HIGH-STRAIN-RATE SUPERPLASTICITY;164
12.6;6. SUPERPLASTICITY IN NANOCRYSTALLINE AND SUBMICROCRYSTALLINE MATERIALS;172
13;Chapter 7 - Recrystallization;178
13.1;1. INTRODUCTION;178
13.2;2. DISCONTINUOUS DRX;179
13.3;3. GEOMETRIC DRX;182
13.4;4. PARTICLE-STIMULATED NUCLEATION;183
13.5;5. CONTINUOUS REACTIONS;183
14;Chapter 8 - Creep Behavior of Particle-Strengthened Alloys;186
14.1;1. INTRODUCTION;186
14.2;2. SMALL VOLUME-FRACTION PARTICLES COHERENT AND INCOHERENT WITH THE MATRIX WITH SMALL ASPECT RATIOS;187
15;Chapter 9 - Creep of Intermetallics;208
15.1;1. INTRODUCTION;209
15.2;2. TITANIUM ALUMINIDES;211
15.3;3. IRON ALUMINIDES;226
15.4;4. NICKEL ALUMINIDES;236
16;Chapter 10 - Creep Fracture;252
16.1;1. BACKGROUND;252
16.2;2. CAVITY NUCLEATION;257
16.3;3. GROWTH;263
17;Chapter 11 - ./.' Nickel-Based Superalloys;280
17.1;1. INTRODUCTION;280
17.2;2. LOW-TEMPERATURE CREEP;285
17.3;3. INTERMEDIATE-TEMPERATURE CREEP;287
17.4;4. HIGH-TEMPERATURE CREEP;289
18;Chapter 12 - Creep in Amorphous Metals;294
18.1;1. INTRODUCTION;294
18.2;2. MECHANISMS OF DEFORMATION;296
19;Chapter 13 - Low-Temperature Creep Plasticity;306
19.1;1. INTRODUCTION;306
19.2;2. CREEP BEHAVIOR OF VARIOUS METALS AND ALLOYS;308
19.3;3. MECHANISMS;314
20;REFERENCES;320
21;INDEX;352


List of Symbols and Abbreviations
a    Cavity radius ao    Lattice parameter A' - A??    Constants AFAC–JAAPBASNACR}    Solute dislocation interaction parameters Agb    Grain boundary area AHD    Harper–Dorn equation constant APL    Constants Av    Projected area of void A0–A12    Constant APB    Antiphase boundary b    Burgers vector B    Constant BMG    Bulk metallic glass c    Concentration of vacancies c*    Crack growth rate cj    Concentration of jogs cp    Concentration of vacancies in the vicinity of a jog p*    Steady-state vacancy concentration near a jog cv    Equilibrium vacancy concentration vD    Vacancy concentration near a node or dislocation c0    Initial crack length c1–2    Constants C    Concentration of solute atoms C*    Integral for fracture mechanics of time-dependent plastic materials C1–2    Constant CLM    Larson–Miller constant CBED    Convergent beam electron diffraction CGBS    Cooperative grain boundary sliding CS    Crystallographic slip CSF    Complex stacking fault CSL    Coincident site lattice 0*    Constant C0–C5    Constants d    Average spacing of dislocations that comprise a subgrain boundary D    General diffusion coefficient or constant D'    Constant Dc    Diffusion coefficient for climb Deff    Effective diffusion coefficient Dg    Diffusion coefficient for glide Dgb    Diffusion coefficient along grain boundaries Di    Interfacial diffusion Ds    Surface diffusion coefficient Dsd    Lattice self-diffusion coefficient Dv    Diffusion coefficient for vacancies D0    Diffusion constant DRX    Discontinuous dynamic recrystallization ˜    Diffusion coefficient for the solute atoms e    Solute–solvent size difference or misfit parameter E    Young's modulus or constant Ej    Formation energy for a jog EBSP    Electron backscatter patterns f    Fraction fm    Fraction of mobile dislocations fp    Chemical dragging force on a jog fsub    Fraction of material occupied by subgrains F    Total force per unit length on a dislocation FEM    Finite element method g    Average grain size (diameter) g'    Constant G    Shear modulus GBS    Grain boundary sliding GDX    Geometric dynamic recrystallization GNB    Geometrically necessary boundaries hr    Hardening rate ¯m    Average separation between slip planes within a subgrain with gliding dislocations h    Dipole height or strain-hardening coefficient HAB    High angle boundary HVEM    High voltage transmission electron microscopy j    Jog spacing J    Integral for fracture mechanics of plastic material Jgb    Vacancy flux along a grain boundary k    Boltzmann constant k'–k'?    Constants ky    Hall–Petch constant kMG    Monkman–Grant constant kR    Relaxation factor k1–k10    Constants K    Strength parameter or constant KI    Stress intensity factor K0–K7    Constants l    Link length of a Frank dislocation network lc    Critical link length to unstably bow a pinned dislocation lm    Maximum link length l    Migration distance for a dislocation in Harper–Dorn creep L    Particle separation distance LAB    Low angle boundary LM    Larson–Miller parameter LRIS    Long-range internal stress m    Strain-rate sensitivity exponent (=1/N) m'    Transient creep time exponent m?    Strain-rate exponent in the Monkman–Grant equation mc    Constant ¯    Average Taylor factor for a polycrystal M?    Dislocation multiplication constant n    Steady-state creep exponent or strain-hardening exponent n*    Equilibrium concentration of critical sized nuclei nm    Steady-state stress exponent of the matrix in a multi-phase material N    Constant structure stress exponent and dislocation link length per unit volume ?    Nucleation rate and rate of release of dislocation loops p    Steady-state dislocation density stress exponent p'    Inverse grain size stress exponent for superplasticity PLB    Power law breakdown POM    Polarized light optical microscopy PSB    Persistent slip band q    Dislocation spacing, d, stress exponent Qc    Activation energy for creep (with E or G compensation) c'    Apparent activation energy for creep (no E or G compensation) Qp    Activation energy for dislocation pipe diffusion Qsd    Activation energy for lattice self-diffusion Qv    Formation energy for a vacancy Q*    Effective activation energies in composites where load transfer occurs rr    Recovery rate Ro    Diffusion distance Rs    Radius of solvent atoms s    Structure SAED    Selected area electron diffraction SESF    Superlattice extrinsic stacking fault SISF    Superlattice intrinsic stacking fault STZ    Shear transformation zone t    Time tc    Time for cavity coalescence on a grain boundary facet tf    Time to fracture (rupture) ts    Time to the onset of steady-state T    Temperature Td    Dislocation line tension Tg    Glass transition temperature Tm    Melting temperature Tp    Temperature of the peak yield strength Tx    Onset crystallization temperature TEM    Transmission electron microscopy T–T–T    Time–temperature–transformation diagram v    Dislocation glide...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.