E-Book, Englisch, 356 Seiten
ISBN: 978-0-08-099432-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Dr. Kassner is a professor in the department of Aerospace and Mechanical Engineering at the University of Southern California in Los Angeles. He holds M.S.and Ph.D. degrees in Materials Science and Engineering from Stanford University, has published two books and more than 200 articles and book chapters in the areas of metal plasticity theory, creep, fracture, phase diagrams, fatigue, and semi-solid forming, and currently serves on the editorial board of Elsevier's International Journal of Plasticity.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Fundamentals of Creep in Metals and Alloys;4
3;Copyright;5
4;CONTENTS;6
5;PREFACE;12
6;LIST OF SYMBOLS AND ABBREVIATIONS;14
7;Chapter 1 - Fundamentals of Creep in Materials;20
7.1;1. INTRODUCTION;20
8;Chapter 2 - Five-Power-Law Creep;26
8.1;1. MACROSCOPIC RELATIONSHIPS;27
8.2;2. MICROSTRUCTURAL OBSERVATIONS;47
8.3;3. RATE-CONTROLLING MECHANISMS;85
8.4;4. OTHER EFFECTS ON FIVE-POWER-LAW CREEP;110
9;Chapter 3 - Diffusional Creep;122
10;Chapter 4 - Harper-Dorn Creep;128
10.1;1. INTRODUCTION;128
10.2;2. THEORIES FOR HARPER-DORN;134
10.3;3. MORE RECENT DEVELOPMENTS;140
10.4;4. OTHER MATERIALS FOR WHICH HARPER-DORN HAS BEEN SUGGESTED;144
10.5;5. SUMMARY;147
11;Chapter 5 - The 3-Power-Law Viscous Glide Creep;148
12;Chapter 6 - Superplasticity;158
12.1;1. INTRODUCTION;158
12.2;2. CHARACTERISTICS OF FSS;159
12.3;3. MICROSTRUCTURE OF FINE-STRUCTURE SUPERPLASTIC MATERIALS;163
12.4;4. TEXTURE STUDIES IN SUPERPLASTICITY;164
12.5;5. HIGH-STRAIN-RATE SUPERPLASTICITY;164
12.6;6. SUPERPLASTICITY IN NANOCRYSTALLINE AND SUBMICROCRYSTALLINE MATERIALS;172
13;Chapter 7 - Recrystallization;178
13.1;1. INTRODUCTION;178
13.2;2. DISCONTINUOUS DRX;179
13.3;3. GEOMETRIC DRX;182
13.4;4. PARTICLE-STIMULATED NUCLEATION;183
13.5;5. CONTINUOUS REACTIONS;183
14;Chapter 8 - Creep Behavior of Particle-Strengthened Alloys;186
14.1;1. INTRODUCTION;186
14.2;2. SMALL VOLUME-FRACTION PARTICLES COHERENT AND INCOHERENT WITH THE MATRIX WITH SMALL ASPECT RATIOS;187
15;Chapter 9 - Creep of Intermetallics;208
15.1;1. INTRODUCTION;209
15.2;2. TITANIUM ALUMINIDES;211
15.3;3. IRON ALUMINIDES;226
15.4;4. NICKEL ALUMINIDES;236
16;Chapter 10 - Creep Fracture;252
16.1;1. BACKGROUND;252
16.2;2. CAVITY NUCLEATION;257
16.3;3. GROWTH;263
17;Chapter 11 - ./.' Nickel-Based Superalloys;280
17.1;1. INTRODUCTION;280
17.2;2. LOW-TEMPERATURE CREEP;285
17.3;3. INTERMEDIATE-TEMPERATURE CREEP;287
17.4;4. HIGH-TEMPERATURE CREEP;289
18;Chapter 12 - Creep in Amorphous Metals;294
18.1;1. INTRODUCTION;294
18.2;2. MECHANISMS OF DEFORMATION;296
19;Chapter 13 - Low-Temperature Creep Plasticity;306
19.1;1. INTRODUCTION;306
19.2;2. CREEP BEHAVIOR OF VARIOUS METALS AND ALLOYS;308
19.3;3. MECHANISMS;314
20;REFERENCES;320
21;INDEX;352
List of Symbols and Abbreviations
a Cavity radius ao Lattice parameter A' - A?? Constants AFAC–JAAPBASNACR} Solute dislocation interaction parameters Agb Grain boundary area AHD Harper–Dorn equation constant APL Constants Av Projected area of void A0–A12 Constant APB Antiphase boundary b Burgers vector B Constant BMG Bulk metallic glass c Concentration of vacancies c* Crack growth rate cj Concentration of jogs cp Concentration of vacancies in the vicinity of a jog p* Steady-state vacancy concentration near a jog cv Equilibrium vacancy concentration vD Vacancy concentration near a node or dislocation c0 Initial crack length c1–2 Constants C Concentration of solute atoms C* Integral for fracture mechanics of time-dependent plastic materials C1–2 Constant CLM Larson–Miller constant CBED Convergent beam electron diffraction CGBS Cooperative grain boundary sliding CS Crystallographic slip CSF Complex stacking fault CSL Coincident site lattice 0* Constant C0–C5 Constants d Average spacing of dislocations that comprise a subgrain boundary D General diffusion coefficient or constant D' Constant Dc Diffusion coefficient for climb Deff Effective diffusion coefficient Dg Diffusion coefficient for glide Dgb Diffusion coefficient along grain boundaries Di Interfacial diffusion Ds Surface diffusion coefficient Dsd Lattice self-diffusion coefficient Dv Diffusion coefficient for vacancies D0 Diffusion constant DRX Discontinuous dynamic recrystallization ˜ Diffusion coefficient for the solute atoms e Solute–solvent size difference or misfit parameter E Young's modulus or constant Ej Formation energy for a jog EBSP Electron backscatter patterns f Fraction fm Fraction of mobile dislocations fp Chemical dragging force on a jog fsub Fraction of material occupied by subgrains F Total force per unit length on a dislocation FEM Finite element method g Average grain size (diameter) g' Constant G Shear modulus GBS Grain boundary sliding GDX Geometric dynamic recrystallization GNB Geometrically necessary boundaries hr Hardening rate ¯m Average separation between slip planes within a subgrain with gliding dislocations h Dipole height or strain-hardening coefficient HAB High angle boundary HVEM High voltage transmission electron microscopy j Jog spacing J Integral for fracture mechanics of plastic material Jgb Vacancy flux along a grain boundary k Boltzmann constant k'–k'? Constants ky Hall–Petch constant kMG Monkman–Grant constant kR Relaxation factor k1–k10 Constants K Strength parameter or constant KI Stress intensity factor K0–K7 Constants l Link length of a Frank dislocation network lc Critical link length to unstably bow a pinned dislocation lm Maximum link length l Migration distance for a dislocation in Harper–Dorn creep L Particle separation distance LAB Low angle boundary LM Larson–Miller parameter LRIS Long-range internal stress m Strain-rate sensitivity exponent (=1/N) m' Transient creep time exponent m? Strain-rate exponent in the Monkman–Grant equation mc Constant ¯ Average Taylor factor for a polycrystal M? Dislocation multiplication constant n Steady-state creep exponent or strain-hardening exponent n* Equilibrium concentration of critical sized nuclei nm Steady-state stress exponent of the matrix in a multi-phase material N Constant structure stress exponent and dislocation link length per unit volume ? Nucleation rate and rate of release of dislocation loops p Steady-state dislocation density stress exponent p' Inverse grain size stress exponent for superplasticity PLB Power law breakdown POM Polarized light optical microscopy PSB Persistent slip band q Dislocation spacing, d, stress exponent Qc Activation energy for creep (with E or G compensation) c' Apparent activation energy for creep (no E or G compensation) Qp Activation energy for dislocation pipe diffusion Qsd Activation energy for lattice self-diffusion Qv Formation energy for a vacancy Q* Effective activation energies in composites where load transfer occurs rr Recovery rate Ro Diffusion distance Rs Radius of solvent atoms s Structure SAED Selected area electron diffraction SESF Superlattice extrinsic stacking fault SISF Superlattice intrinsic stacking fault STZ Shear transformation zone t Time tc Time for cavity coalescence on a grain boundary facet tf Time to fracture (rupture) ts Time to the onset of steady-state T Temperature Td Dislocation line tension Tg Glass transition temperature Tm Melting temperature Tp Temperature of the peak yield strength Tx Onset crystallization temperature TEM Transmission electron microscopy T–T–T Time–temperature–transformation diagram v Dislocation glide...