Buch, Englisch, 280 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 567 g
A Data-Centric Approach
Buch, Englisch, 280 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 567 g
ISBN: 978-1-032-50380-6
Verlag: CRC Press
Features
- Data-centric explainable machine learning (ML) approaches for geospatial data analysis.
- The foundations and approaches to explainable ML and deep learning.
- Several case studies from urban land cover and forestry where existing explainable machine learning methods are applied.
- Descriptions of the opportunities, challenges, and gaps in data-centric explainable ML approaches for geospatial data analysis.
- Scripts in R and python to perform geospatial data analysis, available upon request.
This book is an essential resource for graduate students, researchers, and academics working in and studying data science and machine learning, as well as geospatial data science professionals using GIS and remote sensing in environmental fields.
Zielgruppe
Academic, Postgraduate, Professional, and Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Umweltwissenschaften Umwelttechnik
- Technische Wissenschaften Umwelttechnik | Umwelttechnologie Umwelttechnik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Geowissenschaften Geologie GIS, Geoinformatik
Weitere Infos & Material
Part I: Introduction. 1. Challenges and Opportunities. Part II: Foundations. 2. An Introduction to Explainable Machine Learning. 3. Approaches to Explainable Machine Learning. 4. Approaches to Explainable Deep Learning. 5. Landslide Susceptibility Modeling Using a Logistic Regression Model. Part III: Techniques and Applications. 6. Urban Land Cover Classification Using Earth Observation (EO) Data and Machine Learning Models. 7. Modeling Forest Canopy Height Using Earth Observation (EO) Data and Machine Learning Models. 8. Modeling Aboveground Biomass Density Using Earth Observation (EO) Data and Machine Learning Models. 9. Explainable Deep Learning for Mapping Building Footprints Using High-Resolution Imagery. 10. Towards Explainable AI and Data-Centric Approaches for Geospatial Data Analysis. 11. Appendix.