Kaminow | An Introduction to Electrooptic Devices | E-Book | sack.de
E-Book

E-Book, Englisch, 424 Seiten, Web PDF

Kaminow An Introduction to Electrooptic Devices

Selected Reprints and Introductory Text By
1. Auflage 2013
ISBN: 978-1-4832-1849-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Reprints and Introductory Text By

E-Book, Englisch, 424 Seiten, Web PDF

ISBN: 978-1-4832-1849-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



An Introduction to Electrooptic Devices aims to present an introduction to the electrooptic effect and to summarize work on devices employing the electrooptic effect. The book provides the necessary background in classical crystal optics. The text then discusses topics including crystal symmetry, the tensor description of linear dielectric properties, propagation in anisotropic media, and passive crystal optic devices. The book also describes the phenomenological description of tensor nonlinear dielectric properties of crystals, with emphasis on the electrooptic effect; device design and application; and a listing of linear electrooptic coefficients for various substances. People involved in the study of electrooptic devices will find the text invaluable.

Kaminow An Introduction to Electrooptic Devices jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;An Introduction to Electrooptic Devices;4
3;Copyright Page;5
4;Dedication;6
5;Table of Contents;8
6;Preface;14
7;CHAPTER I. Crystal Optics;16
7.1;1. Crystallography;16
7.2;2. Tensor Properties;27
7.3;3. Light Propagation in Anisotropic Crystals;34
7.4;References;51
8;CAPTER II. Nonlinear Dielectric Effects;54
8.1;1. Introduction;54
8.2;2. Electrooptic Effects;55
8.3;3. Elastooptic Effects;68
8.4;4. Nonlinear Optical Effects;71
8.5;References;85
9;CHAPTER III. Reprints;88
9.1;1. Reviews;88
9.1.1;1.1 Electrooptic light modulators;88
9.1.1.1;I. INTRODUCTION;88
9.1.1.2;II. ELECTROOPTIC BEHAVIOR OF CRYSTALS1;89
9.1.1.3;III. MATERIALS;92
9.1.1.4;IV. MODULATOR DESIGN;98
9.1.1.5;CONCLUSIONS;101
9.1.1.6;REFERENCES;102
9.1.2;1.2 Modulators for optical communications;105
9.1.2.1;INTRODUCTION;105
9.1.2.2;ELECTROOPTIC MODULATORS;110
9.1.2.3;ACOUSTOOPTIC AND MAGNETOOPTIC MODULATORS;117
9.1.2.4;CONCLUSIONS;119
9.1.2.5;ACKNOWLEDGMENT;120
9.1.2.6;REFERENCES;120
9.1.3;1.3 Linear electrooptical materials;123
9.1.3.1;DEFINITIONS1;123
9.1.3.2;TABLES OF COEFFICIENTS;124
9.1.3.3;REFERENCES;132
9.2;2. Characterization and Measurement of the Electrooptic Effect;136
9.2.1;2.1 Effects of the Electrical and Magnetic Fields ;136
9.2.1.1;1. EFFECTS WHICH ARE NOT REVERSED WITH THE FIELD DIRECTION;136
9.2.1.2;2. REVERSIBLE ELECTROOPTICAL EFFECTS (FIRST OBSERVATIONS OF QUARTZ CRYSTALS);136
9.2.1.3;3. GENERAL THEORY OF ELECTROOPTICAL EFFECTS REVERSIBLE WITH THE FIELD DIRECTION;138
9.2.1.4;4. ELECTROOPTICAL PROPERTIES OF QUARTZ AND TOURMALINE;141
9.2.1.5;5. SODIUM CHLORATE;145
9.2.1.6;6. ROCHELLE SALT (PURE POTASSIUM-SODIUM TARTRATE);149
9.2.1.7;7. ROTATION IN THE MAGNETIC FIELD.;150
9.2.1.8;BIBLIOGRAPHY;152
9.2.2;2.2 The electro-optic effect in uniaxial crystals of the type X H2P04.1. Theoretical;153
9.2.2.1;INTRODUCTION;153
9.2.2.2;THEORETICAL;153
9.2.2.3;FIELD IN Z DIRECTION;155
9.2.2.4;FIELD IN X OR Y DIRECTIONS;157
9.2.2.5;CONCLUSIONS;157
9.2.3;2.3 The electro-optic effect in uniaxial crystals of the dihydrogen phosphate type. III. Measurement of coefficients;158
9.2.3.1;INTRODUCTION;158
9.2.3.2;THEORY OF MEASUREMENTS;158
9.2.3.3;MEASUREMENT OF r4l;161
9.2.3.4;SENSITIVITY OF THE A.C. METHOD;162
9.2.3.5;ACKNOWLEDGMENT;162
9.2.4;2.4 Electro-optical effect of zincblende;163
9.2.4.1;1. INTRODUCTION;163
9.2.4.2;2. THEORY;163
9.2.4.3;3. MEASUREMENTS OF ELECTRO-OPTICAL COEFFICIENT IN ZINCBLENDE;164
9.2.4.4;4. ZnS CRYSTAL LIGHT MODULATOR;166
9.2.5;2.5 Microwave modulation of the electro-optic effect in KH2P04;167
9.2.6;2.6 The strain-free electro-optic effect in single-crystal barium titanate;170
9.2.7;2.7 Barium titanate light phase modulator;174
9.2.8;2.8 Barium titanate light modulator. II;177
9.2.9;2.9 High-frequency electro-optic coefficients of lithium niobate;180
9.2.10;2.10 Electrooptic coefficients in calcium pyroniobate;182
9.2.10.1;Introduction;182
9.2.10.2;Principal Axis Coefficients;182
9.2.10.3;Skew Coefficients;183
9.2.10.4;Discussion;184
9.2.10.5;References;184
9.2.11;2.11 Turner, Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide;185
9.2.11.1;I. INTRODUCTION;185
9.2.11.2;II. ELECTRO-OPTIC COEFFICIENT MEASUREMENTS;185
9.2.11.3;III. REFRACTIVE INDEX MEASUREMENTS;189
9.2.11.4;ACKNOWLEDGMENTS;190
9.2.11.5;APPENDIX;190
9.2.12;2.12 Measurements of the electrooptic effect in CdS, ZnTe, and GaAs at 10.6 microns;192
9.2.12.1;INTRODUCTION;192
9.2.12.2;EXPERIMENT;193
9.2.12.3;RESULTS;193
9.2.12.4;CONCLUSIONS;194
9.2.12.5;ACKNOWLEDGMENT;195
9.2.12.6;REFERENCES;195
9.3;3. Lumped Electrooptic Modulators;196
9.3.1;3.1 Lithium tantalate light modulators;196
9.3.1.1;1. INTRODUCTION;196
9.3.1.2;2. PHYSICAL PROPERTIES OF LiTa03;196
9.3.1.3;3. CHARACTERISTICS OF THE LiTaOg INTENSITY MODULATOR;197
9.3.1.4;4. COMPARISON OF KDP, KTN, LiNbO3, AND LiTaO3 FOR MODULATOR APPLICATIONS;201
9.3.1.5;5. SUMMARY;202
9.3.1.6;ACKNOWLEDGMENTS;202
9.3.2;3.2 Performance of LiTa03 and and LiNbO3 light modulators at 4 GHz;203
9.3.2.1;References;204
9.3.3;3.3 A push-pull optical amplitude modulator;205
9.3.3.1;I. DESCRIPTION OF THE MODULATOR;206
9.3.3.2;II. MODULATOR PERFORMANCE;206
9.3.3.3;ACKNOWLEDGMENT;207
9.3.3.4;REFERENCES;208
9.3.4;3.4 Efficient octave-bandwidth microwave light modulators;209
9.3.4.1;I. INTRODUCTION;209
9.3.4.2;II. MODULATOR CIRCUIT AND ELECTROOPTIC INTERACTION;209
9.3.4.3;III. MEASUREMENT TECHNIQUES;210
9.3.4.4;IV. EXPERIMENTAL RESULTS;211
9.3.4.5;V. CONCLUSIONS;212
9.3.4.6;VI. ACKNOWLEDGMENT;213
9.3.4.7;REFERENCES;213
9.3.5;3.5 Fabrication of a lithium tantalate temperature-stabilized optical modulator;214
9.3.5.1;Introduction;214
9.3.5.2;Substrate;215
9.3.5.3;Crystal Orientation;215
9.3.5.4;Lithium Tantalate Fabrication;215
9.3.5.5;Soldering the LiTaO, Crystals;216
9.3.5.6;Modulator Assembly Procedure;216
9.3.5.7;Half-Wave Retardation Plate;217
9.3.5.8;Thermal Testing of Individual Modulator Rods;217
9.3.5.9;Results;218
9.3.5.10;Alignment Test;218
9.3.5.11;Conclusion;219
9.3.5.12;References;219
9.3.6;3.6 A comparison of acoustooptic and electrooptic modulators at 10.6 microns;220
9.3.6.1;1. INTRODUCTION;220
9.3.6.2;2. ACOUSTOOPTIC MODULATORS;220
9.3.6.3;3. ELECTROOPTIC MODULATORS;221
9.3.6.4;4. COMPARISON OF MODULATORS;222
9.3.6.5;5. CONCLUSIONS;222
9.3.6.6;REFERENCES;223
9.3.7;3.7 Evaluation of PLZT ceramics application in optical communications;224
9.3.7.1;References;227
9.4;4. Traveling Wave Electrooptic Modulators;228
9.4.1;4.1 Splitting of Fabry-Perot rings by microwave modulation of light;228
9.4.2;4.2 Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator;230
9.4.2.1;INTKODICTION;230
9.4.2.2;MODULATOR DESCRIPTION;230
9.4.2.3;MODULATOR DESIGN;231
9.4.2.4;CONCLUSION;235
9.4.2.5;ACKNOWLEDGMENT;235
9.4.3;4.3 0 to 3 GHz traveling-wave electrooptic modulator;236
9.4.3.1;ACKNOWLEDGMENT;237
9.4.3.2;REFERENCES;237
9.4.4;4.4 Half-octave bandwidth traveling-wave X-band optical phase modulator;238
9.4.4.1;ACKNOWLEDGMENT;239
9.4.4.2;REFERENCES;239
9.4.5;4.5 A 964-GHz traveling-wave electro-optic light modulator;240
9.4.6;4.6 Traveling wave electrooptic modulators;243
9.4.6.1;1. Introduction;243
9.4.6.2;2. Transit time effects in travelling wave electro-opticmodulators;243
9.4.6.3;3. Modulator design process;245
9.4.6.4;4. Performance characteristics;246
9.4.6.5;5. Conclusions;248
9.4.6.6;Acknowledgement;248
9.4.6.7;References;248
9.5;5. Frequency Shifters and Pulse Compressor;249
9.5.1;5.1 Optical frequency shifting by electro-optic effect;249
9.5.2;5.2 Optical frequency shifting of a mode-locked laser beam;253
9.5.2.1;INTRODUCTION;253
9.5.2.2;THEORY;253
9.5.2.3;EXPERIMENTAL TECHNIQUE;254
9.5.2.4;EXPERIMENTAL RESULTS;254
9.5.2.5;SATELLITE PEAKS;255
9.5.2.6;OUTLOOK;256
9.5.2.7;ACKNOWLEDGMENT;256
9.5.2.8;REFERENCES;256
9.5.3;5.3 Rotating-waveplate optical-frequency shifting in lithium niobate;258
9.5.3.1;INTRODUCTION;258
9.5.3.2;DESCRIPTION OF THE MODULATOR;259
9.5.3.3;EXPERIMENTS;260
9.5.3.4;EFFECTS OF MODULATOR MALADJUSTMENTS;263
9.5.3.5;SUMMARY;264
9.5.3.6;REFERENCES;265
9.5.4;5.4 Compression of pulses from a mode-locked He-Ne laser;266
9.6;6. Guided Wave Materials and Modulators;269
9.6.1;6.1 Reduced modulator drive-power requirements for 10.6-µ guided waves;269
9.6.1.1;ACKNOWLEDGMENT;270
9.6.1.2;REFERENCES;270
9.6.2;6.2 Reverse-biased gallium phosphide diodes as high frequency light modulators;271
9.6.2.1;I. INTRODUCTION;271
9.6.2.2;II. DIODE FABRICATION;271
9.6.2.3;III. ELECTRICAL PROPERTIES;271
9.6.2.4;IV. OPTICAL PROPERTIES;274
9.6.2.5;V. INTENSITY MODULATION;276
9.6.2.6;VI. PHASE MODULATION;277
9.6.2.7;VII. CONCLUSIONS AND SUMMARY;279
9.6.2.8;ACKNOWLEDGMENTS;279
9.6.3;6.3 Efficient GaAs-Alx GaIx As double-heterostructure light modulators;280
9.6.4;6.4 Optical guiding and electro-optic modulation in GaAs epitaxial layers;283
9.6.4.1;REFERENCES;285
9.6.5;6.5 Observation of propagation cutoff and its control in thin optical waveguides;286
9.6.6;6.6 Interdigital Electrooptic thin-film modulator;289
9.6.7;6.7 Optical waveguiding in proton-implanted GaAs;292
9.6.8;6.8 Fabrication of single-crystal semiconductor optical waveguides by solid-state diffusion;294
9.6.9;6.9 Epitaxial electro-optic mixed crystal (NH4) K1-xH2P04 film waveguide;298
9.6.10;6.10 Low-loss epitaxial ZnO optical waveguides;301
9.6.11;6.11 Optical waveguiding layers in LiNb03 and LiTa03;304
9.6.12;6.12 Thin-film LiNb03 electro-optic light modulator;307
9.6.13;6.13 Pulse amplitude modulation of a C02 laser in an electrooptic thin-film waveguide;310
9.7;7. Beam Deflectors and Diffractors;314
9.7.1;7.1 A survey of laser beam deflection techniques;314
9.7.1.1;I. INTRODUCTION;314
9.7.1.2;II. VARIABLE REFLECTORS;315
9.7.1.3;111. VARIABLE REFRACTORS;316
9.7.1.4;IV. BIREFRINGENT DEFLECTION;317
9.7.1.5;V. INTERFERENCE DEFLECTION;317
9.7.1.6;VI. COMPARISON OF DEFLECTION TECHNIQUES;318
9.7.1.7;APPENDIX:DISTRIBUTED DEFLECTION SYSTEMS;319
9.7.1.8;REFERENCES;320
9.7.2;7.2 Nanosecond baseband optical-diffraction modulator;322
9.7.2.1;References;323
9.7.3;7.3 Digital electro-optic grating deflector and modulator;324
9.7.4;7.4 Optical beam steering using a multichannel lithium tantalate crystal;327
9.7.4.1;I. Introduction;327
9.7.4.2;II. Multichannel Lithium Tantalate Phase Modulator;327
9.7.4.3;III. Beam Steering Properties of the Optical Phased Array;328
9.7.4.4;IV. Optical Beam Steering Results;329
9.7.4.5;V. Conclusions;330
9.7.4.6;References;330
9.8;8. Optical Damage;331
9.8.1;8.1 Optically induced change of refractive indices in LiNb03 and LiTa03;331
9.8.1.1;I. INTRODUCTION;331
9.8.1.2;II. BASIC EXPERIMENTAL OBSERVATIONS;331
9.8.1.3;III. PROPOSED MODEL AND CLARIFYING EXPERIMENTS;334
9.8.1.4;IV. CONCLUSIONS;338
9.8.1.5;ACKNOWLEDGMENTS;338
9.8.2;8.2 Optical index damage in electrooptic crystals;339
9.8.2.1;1. INTRODUCTION;339
9.8.2.2;2. HISTORICAL REVIEW;340
9.8.2.3;3. QUANTITATIVE MEASUREMENT OF INDEX DAMAGE;341
9.8.2.4;4. EARLY EXPERIMENTS;342
9.8.2.5;5. IRON CONTAMINATION;344
9.8.2.6;6. X-IRRADIATION;348
9.8.2.7;7. MECHANISM OF INDEX CHANGE;349
9.8.2.8;8. QUANTUM EFFICIENCY;351
9.8.2.9;9. PHOTOCHROMIC EFFECTS;352
9.8.2.10;11. APPLICATIONS OF LASER INDUCED INDEX DAMAGE;355
9.8.2.11;12. DIFFUSION DOPING;356
9.8.2.12;13. CONCLUSIONS;356
9.8.2.13;14. ACKNOWLEDGMENTS;357
9.8.2.14;15. REFERENCES;357
9.9;9. Kerr Effect Devices;359
9.9.1;9.1 Microwave modulation of light using the Kerr effect;359
9.9.1.1;INTRODUCTION;359
9.9.1.2;ANALYSIS;359
9.9.1.3;EXPERIMENTAL;362
9.9.1.4;CONCLUSIONS;364
9.9.2;9.2 Carbon disulfide traveling-wave Kerr cells;365
9.9.2.1;INTRODUCTION;365
9.9.2.2;DESCRIPTION;365
9.9.2.3;ANALYSIS OF THE TRAVELING-WAVE KERR CELL;366
9.9.2.4;MODULATION POWER REQUIREMENTS;366
9.9.2.5;DEPTH OF MODULATION;367
9.9.2.6;EXPERIMENTAL RESULTS;368
9.9.2.7;DISCUSSION OF RESULTS;369
9.9.2.8;ACKNOWLEDGMENT;369
9.9.2.9;REFERENCES;369
9.9.3;9.3 Light modulation and beam deflection with potassium tantalate-niobate crystals;370
9.9.3.1;INTRODUCTION;370
9.9.3.2;I. PHYSICAL PROPERTIES OF KTN;370
9.9.3.3;Ð. MODULATORS UTILIZING KTN;373
9.9.3.4;ÉÐ. BEAM DEFLECTOR;376
9.9.3.5;CONCLUSIONS;379
9.9.3.6;ACKNOWLEDGMENTS;380
9.9.4;9.4 An ultrafast light gate;381
9.10;10. Inverse Electrooptic Effect: Optical Rectification and Difference Frequency Mixing;384
9.10.1;10.1 Absolute measurement of an optical-rectification coefficient in ammonium dihydrogen phosphate;384
9.10.1.1;I. INTRODUCTION;384
9.10.1.2;II. EXPERIMENTAL;384
9.10.1.3;m. ANALYSIS OF DATA;387
9.10.1.4;IV. LINEAR ELECTRO-OPTIC COEFFICIENT;388
9.10.1.5;V. CONCLUSION;389
9.10.1.6;ACKNOWLEDGMENTS;389
9.10.2;10.2 Submillimeter wave generation by difference-frequency mixing in GaAs;390
9.11;11. Lattice Contribution to the Electrooptic Effect;393
9.11.1;11.1 Dispersion in the nonlinear susceptibility of GaP near the reststrahl band;393
9.11.1.1;I. INTRODUCTION;393
9.11.1.2;II. APPARATUS;393
9.11.1.3;III. EFFECTS OBSERVED WITH LINEAR POLARIZERS AND ANALYZERS; OTHER FEATURES OF THE SCATTERING;394
9.11.1.4;IV. RESONANCE OF THE NONLINEAR SUSCEPTIBILITY; NEW DATA;395
9.11.1.5;V. CONCLUSION;398
9.11.1.6;ACKNOWLEDGMENTS;398
9.11.1.7;APPENDIX;398
9.11.2;11.2 Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies;399
9.11.3;11.3 Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals;402
9.12;12. Dispersion of the Electrooptic Effect near the Band Edge;406
9.13;12.1 Dispersion of optical and electro-optical coefficients in semiconductors;406
9.13.1;1. Introduction;406
9.13.2;2. Linear polarizability theory;406
9.13.3;3. Non-linear polarizability theory;410
9.13.4;4. Conclusion;412
9.13.5;Acknowledgments;412
9.13.6;References;412
9.14;12.2 Dispersion of electro-optic effect in BaTi03;413
9.14.1;1. INTRODUCTION;413
9.14.2;II. TWO-OSCILLATOR MODEL;413
9.14.3;III. REFRACTIVE INDEX AND BIREFRINGENCE;414
9.14.4;IV. QUADRATIC ELECTRO-OPTIC RESPONSE;416
9.14.5;V. LINEAR ELECTRO-OPTIC EFFECT;417
9.14.6;VI. uv REFLECTIVITY;417
9.14.7;VII. CLAMPING;418
9.14.8;VIII. CONCLUSIONS;419
10;Author Index;420
11;Subject Index;422



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.