E-Book, Englisch, 215 Seiten, eBook
Junior / Dingel Energy and Thermal Management, Air-Conditioning, and Waste Heat Utilization
1. Auflage 2018
ISBN: 978-3-030-00819-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
2nd ETA Conference, November 22-23, 2018, Berlin, Germany
E-Book, Englisch, 215 Seiten, eBook
ISBN: 978-3-030-00819-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The volumes includes selected and reviewed papers from the 2nd ETA Conference on Energy and Thermal Management, Air Conditioning and Waste Heat Recovery in Berlin, November 22-23, 2018. Experts from university, public authorities and industry discuss the latest technological developments and applications for energy efficiency. Main focus is on automotive industry, rail and aerospace.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;5
2;Contents;6
3;Energy and Thermal Management;8
4;Choice of Energetically Optimal Operating Points in Thermal Management of Electric Drivetrain Components;9
4.1;Abstract;9
4.2;1 Introduction;9
4.3;2 Simulation Model;10
4.3.1;2.1 Drivetrain Model;10
4.3.2;2.2 Cooling Circuit and Underhood Model;11
4.3.3;2.3 Energy Flows Within the Model;12
4.3.4;2.4 Model Parametrization;12
4.4;3 Simulation Approach;14
4.4.1;3.1 Cooling System Control Strategy;15
4.4.2;3.2 Boundary Conditions;15
4.5;4 Simulation Results;16
4.6;5 Conclusion and Outlook;18
4.7;Acknowledgements;19
4.8;Appendix;19
4.9;References;20
5;Higher Cruising Range Through Smart Thermal Management in Electric Vehicles – Interaction Between Air Conditioning and Cooling System Components in the Overall Network;21
5.1;1 Introduction;21
5.2;2 Thermal Management Requirements;22
5.3;3 Concept Preparation in the Development of Thermal Management;24
5.4;4 System Development;25
5.5;5 Component Development;27
5.6;6 Concept Evaluation;31
5.7;7 Summary;35
5.8;References;35
6;Auxiliary Heating, Cooling and Power Generation in Vehicles Based on Stirling Engine Technology;36
6.1;Abstract;36
6.2;1 Introduction;36
6.3;2 Thermodynamic Fundamentals;38
6.3.1;2.1 Regenerator Layout and Operating Principles;38
6.3.2;2.2 Basic Analysis of Regenerative Cycles;38
6.3.3;2.3 Operating Principles of the Vuilleumier Cycle and the Hybrid Cycle;39
6.4;3 Practical Considerations and Potentials;41
6.5;4 Conclusions for Potential Vehicular Applications;43
6.6;References;44
7;Experimental Investigation on Effect of Fuel Property on Emissions and Performance of a Light-Duty Diesel Engine;46
7.1;Abstract;46
7.2;1 Introduction;46
7.3;2 Biodiesel Preparation and Purification;48
7.4;3 Experimental Methodology;49
7.5;4 Results and Discussion;50
7.6;5 Conclusions;53
7.7;Acknowledgement;53
7.8;References;54
8;Conception and First Functional Tests of a Novel Piston-Type Steam Expansion Engine for the Use in Stationary WHR Systems;55
8.1;Abstract;55
8.2;1 Introduction;55
8.3;2 Rotational Wing Piston Expansion Engine;57
8.3.1;2.1 Working Principle;57
8.3.2;2.2 Mechanical Components;59
8.4;3 Sealing Systems on the Expander;60
8.4.1;3.1 Requirements for Seals and Sealing Material;61
8.4.2;3.2 Overview of the Used Rotational Sealing Concepts;61
8.4.3;3.3 Concepts for Piston Seals;63
8.4.4;3.4 Hub Seals;68
8.5;4 Testing of Different Sealing Types;68
8.5.1;4.1 Testbench;68
8.5.2;4.2 Testing-Cycles;69
8.5.3;4.3 Results;69
8.5.4;4.4 Application on the Prototype;71
8.6;5 Summary/Conclusion;71
8.7;References;71
9;Thermal High Performance Storages for Use in Vehicle Applications;72
9.1;Abstract;72
9.2;1 Introduction;72
9.3;2 Design of a Thermal High Performance Storage;73
9.4;3 Boundary Conditions;75
9.4.1;3.1 Reference Scenario;75
9.4.2;3.2 Reference Vehicle;76
9.4.3;3.3 Integration of the THS into the Vehicle;77
9.5;4 Results and Discussion;78
9.5.1;4.1 Properties of the Thermal High Performance Storage;78
9.5.2;4.2 Range of the Vehicle;79
9.5.3;4.3 Comparison of Thermal High Performance Storages to State of the Art Heating Systems;80
9.6;5 Conclusion and Outlook;83
9.7;References;83
10;Determination of the Cooling Medium Composition in an Indirect Cooling System;86
10.1;1 Introduction;86
10.2;2 Heat Exchanger Model and Possible Applications;89
10.2.1;2.1 Dimensionless Temperature Change;90
10.2.2;2.2 Applications;91
10.3;3 Experimental Setup and Results;92
10.3.1;3.1 Test Bench;92
10.3.2;3.2 Vehicle Measurements;94
10.4;4 Concentration Models;97
10.4.1;4.1 Characteristic Maps;97
10.4.2;4.2 Analytical Model;98
10.5;5 Summary and Outlook;101
10.6;References;103
11;Air Conditioning;105
12;Approach for the Transient Thermal Modeling of a Vehicle Cabin;106
12.1;1 Introduction;106
12.1.1;1.1 Modeling Approach;108
12.2;2 Model Description;108
12.2.1;2.1 3D Reference Model;109
12.2.2;2.2 Reduced Model;110
12.2.3;2.3 Parameter Modeling;112
12.3;3 Validation;115
12.4;4 Conclusions;121
12.5;References;122
13;Personalized Air-Conditioning in Electric Vehicles Using Sensor Fusion and Model Predictive Control;124
13.1;1 Introduction;124
13.2;2 System Architecture;126
13.2.1;2.1 MORPHEUS Numerical Thermophysiological Model;127
13.2.2;2.2 BCM Comfort Model;128
13.2.3;2.3 Local Actuators;129
13.2.4;2.4 Model Predictive Control;130
13.3;3 Conclusion;133
13.4;References;134
14;Simply Cozy - Adaptive Controlling for an Individualized Climate Comfort;135
14.1;Abstract;135
14.2;1 Motivation;135
14.3;2 Adaptation of User Preferences to a Climate Controller;136
14.4;3 Results;139
14.5;4 Conclusion and Outlook;142
14.6;References;142
15;Waste Heat Recovery;143
16;Waste Heat Recovery Potential on Heavy Duty Long Haul Trucks – A Comparison;144
16.1;Abstract;144
16.2;1 Introduction;144
16.2.1;1.1 Context;144
16.2.2;1.2 Objectives of This Study;145
16.3;2 Simulation Approach and Boundary Conditions;145
16.3.1;2.1 Rankine Cycle Model and Hybrid Driveline;146
16.3.2;2.2 Application and Rankine Cycle Architecture Scope;148
16.3.3;2.3 Road Cycle Description;149
16.4;3 Results;150
16.4.1;3.1 Exhaust Recovery Results;150
16.4.2;3.2 Coolant Recovery Results;152
16.5;4 Conclusions;153
16.6;References;155
17;Combining Low- and High-Temperature Heat Sources in a Heavy Duty Diesel Engine for Maximum Waste Heat Recovery Using Rankine and Flash Cycles;157
17.1;1 Introduction;158
17.2;2 Methodology;160
17.2.1;2.1 The Heavy Duty Diesel Engine;160
17.2.2;2.2 Thermodynamic Cycles;161
17.3;3 Results;164
17.3.1;3.1 Configuration 1;165
17.3.2;3.2 Configuration 2;167
17.3.3;3.3 Recuperation;168
17.3.4;3.4 Long-Haul Cycle Conditions;169
17.4;4 Discussion;171
17.5;5 Conclusions;172
17.6;References;173
18;Simulative Investigation of the Influence of a Rankine Cycle Based Waste Heat Utilization System on Fuel Consumption and Emissions for Heavy Duty Utility Vehicles;175
18.1;Abstract;175
18.2;1 Introduction;175
18.3;2 Description Engine and Cooling System;176
18.4;3 Waste Heat Recovery System Model;178
18.4.1;3.1 Modeling Approach of Waste Heat Recovery System for Design Point;179
18.4.2;3.2 Pre-control of Working Fluid Mass Flow;183
18.4.3;3.3 Results of Simulation for Off-Design Operating Points;185
18.5;4 Interaction Between Internal Combustion Engine and WHR System;186
18.5.1;4.1 Comparison Between EGR Cooler and EGR Evaporator;187
18.5.2;4.2 EGT Exhaust Gas Backpressure;188
18.5.3;4.3 Reduction of Engine Load;189
18.6;5 Discussion of Cooling Condition for WHR System;192
18.7;6 Conclusion;193
18.8;Acknowledgments;194
18.9;References;195
19;RETRACTED CHAPTER: Requirements for Battery Enclosures - Design Considerations and Practical Examples;197
19.1;Abstract;197
19.2;0;197
20;Design of a Thermoelectric Generator for Heavy-Duty Vehicles: Approach Based on WHVC and Real Driving Vehicle Boundary Conditions;198
20.1;1 Introduction;199
20.2;2 Methodology;200
20.2.1;2.1 Realistic Operation Conditions;200
20.2.2;2.2 TEG Model Development;202
20.3;3 Results and Discussion;205
20.3.1;3.1 Potential Analyses;205
20.3.2;3.2 Simulation Results and Validation;209
20.4;4 Conclusions;211
20.5;References;212
21;Author Index;214