Buch, Englisch, Band 3, 420 Seiten, Paperback, Format (B × H): 156 mm x 234 mm, Gewicht: 1350 g
Reihe: Ecology & Environment
Buch, Englisch, Band 3, 420 Seiten, Paperback, Format (B × H): 156 mm x 234 mm, Gewicht: 1350 g
Reihe: Ecology & Environment
ISBN: 978-1-4020-0755-2
Verlag: Springer Netherlands
Audience: Researchers and decision makers whose work involves the study of ecosystems and ecology. This book is also recommended for use in graduate courses.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften Evolutionsbiologie
- Geowissenschaften Umweltwissenschaften Angewandte Ökologie
- Naturwissenschaften Biowissenschaften Biowissenschaften Meeres- und Süßwasserökologie
- Naturwissenschaften Chemie Physikalische Chemie
- Naturwissenschaften Biowissenschaften Biowissenschaften Naturschutzbiologie, Biodiversität
- Naturwissenschaften Biowissenschaften Biowissenschaften Ökologie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Biowissenschaften Biowissenschaften Terrestrische Ökologie
- Geowissenschaften Umweltwissenschaften Umweltüberwachung, Umweltanalytik, Umweltinformatik
Weitere Infos & Material
1. Introduction: Recent Trends In Science.- 1.1 How Did It start.- 1.2 Physics versus Ecology.- 1.3 Ecology and Physics.- 1.4 Recent Trends in Science.- 1.5. The Ecosystem as an Object of Research.- 2. Do We Need A New, Holistic Ecology.- 2.1 Two Ecologies.- 2.2 Complexity of Ecosystems.- 2.3 Ecology and Quantum Theory.- 3. Models In Ecology.- 3.1 Modelling in Ecology.- 3.2 Modelling Elements.- 3.3 The Modelling Procedure.- 3.4 Types of Models.- 3.5 Complexity of Models.- 3.6 Modelling Constraints and Recent Developments in Ecological Modelling.- 3.7 Application of Models as Scientific, Experimental Tools.- 4. Energy And Ecology.- 4.1 Conservation of Energy and Matter.- 4.2 Energy Flows in Ecosystems.- 4.3 The Maximum Power Principle.- 4.4 Embodied Energy / Emergy.- 5. Entropy And Ecology.- 5.1 The Second Law of Thermodynamics Applied to Ecosystems.- 5.2 Information and Entropy.- 5.3 Ecosystems Generate Entropy.- 5.4 Ecosystems are Non-isolated Systems.- 5.5 Energy Sources and Sinks Establish Order.- 5.6 Self-organization.- 5.7 The Maximum Entropy and Maximum Energy Dissipation Theory.- 6. Exergy And Ecology.- 6.1 The Application of Exergy in Ecological Thermodynamics.- 6.2 Exergy and Information.- 6.3 Application of the Third Law of Thermodynamics in Ecosystem Theory.- 6.4 Application of Exergy in Ecosystem Theory and Darwin’s Theory.- 6.5 Computation of Exergy.- 6.6 Exergy and Modelling.- 6.7 The Tentative Fourth Law of Thermodynamics.- 7. Network And Hierarchical Concepts Of Ecosystems.- 7.1 Networks in Ecology.- 7.2 Networks Concepts.- 7.3 Hierarchical Theory of Ecosystems.- 7.4 Network Thermodynamics.- 8. Utility Theory, Indirect Effect And Ascendancy.- 8.1 Towards a wider Application of Network Theory.- 8.2 Energy Transfer and Utilization Coefficients inNetworks.- 8.3 The Indirect Effects in Networks.- 8.4 Ascendancy.- 9. Catastrophe Theory And Ecology.- 9.1 What is Applied Catastrophe Theory.- 9.2 Application of Catastrophe Theory to Explain Shifts in Oxygen Concentration as Function of Time in a Stream.- 9.3 Application of Catastrophe Theory on a Lake Ecosystem.- 9.4 General Application of Catastrophe Theory in Ecology.- 9.5 Ecosystems and Catastrophe Theory.- 10. Chaos, Fractals And Ecology.- 10.1 Introduction and Definitions.- 10.2 Bifurcation and Fractal Dimension.- 10.3 Ecological Implications.- 10.4 Parameter Estimations and Chaos.- 11. Ecosystem Health.- 11.1 Ecosystem Health and Integrity.- 11.2 Ecosystem Integrity and Environmental Changes.- 11.3 Exergy, Structural Exergy and Buffer Capacities as Ecological Indicators.- 11.4 A Practical Procedure to Assess (Partially) Ecosystem Health.- 11.5 Assessment of Ecosystem Health, An Example, A Lake Ecosystem.- 11.6 Agroecological Sustainability and Ecosystem Maturity.- 12. Development Of Ecosystems.- 12.1 Development and Evolution of Ecosystems.- 12.2 Development (Growth) of Ecosystems.- 12.3 Response of Growth to Seasonal Changes.- 12.4 Ecosystem Properties.- 13. Dynamic Of Ecosystems.- 13.1 Ecosystem Dynamic.- 13.2 Modelling Structural Dynamics.- 13.3 Constraints on Ecological Parameters.- 13.4 Application of Exergy as Goal Function in Ecological Modelling.- 13.5 Structurally Dynamic Models of Ecosystems.- 13.6 The Intermediate Disturbance Hypothesis (IDH) and Structural Dynamic Models.- 13.7 Structural Dynamic Models in Population Dynamics.- 13.8 Conclusions.- 14. Goal Functions, Ecological Indicators And Orientors.- 14.1 Introduction.- 14.2 Review of Goal Functions.- 14.3 Comparison of Goal Functions by Use of Models.- 14.4 Other comparisons of Goal Functions.-14.5 Cosmological Considerations.- 14.6 Exergy Storage / Exergy Destruction.- 14.7 Conclusions.- 15. A Tentative Pattern Of Ecosystem Theories.- 15.1 Presentation of a Pattern.- 15.2 A Central Law of Ecosystem Theories.- 15.3 Relations to Other Theories.- 15.4 Tools: Networks and Models.- 15.5 Propositions on Ecosystem Properties.- 15.6 The Application of ELT in Specific Cases.- 16. Towards A Consistent Ecosystem Theory.- 16.1 Introduction.- 16.2 A Reformulation.- 16.3 A Theoretical Network is needed in Ecology.- 16.4 Further Examples of Ecological Observations that can be derived from thermodynamic hypotheses.- 16.5 A consistent Pattern of Ecosystem Theories has been formed.- 16.6 A Model of the three Growth Forms.- 16.7 Closing Remarks.- 17 Epilogue.- 18. Appendix 1. Definitions Of Concepts.- 19. References.- 20. Index.