Joseph / Funada / Wang | Potential Flows of Viscous and Viscoelastic Liquids | Buch | 978-0-521-87337-6 | sack.de

Buch, Englisch, Band 21, 516 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1155 g

Reihe: Cambridge Aerospace Series

Joseph / Funada / Wang

Potential Flows of Viscous and Viscoelastic Liquids


Erscheinungsjahr 2008
ISBN: 978-0-521-87337-6
Verlag: Cambridge University Press

Buch, Englisch, Band 21, 516 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1155 g

Reihe: Cambridge Aerospace Series

ISBN: 978-0-521-87337-6
Verlag: Cambridge University Press


This book illustrates how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called 'potential flow of an inviscid fluid'; when the fluid is incompressible these fluids are, curiously, said to be 'perfect' or 'ideal'. This type of presentation is widespread; it can be found in every book on fluid mechanics, but it is flawed. It is never necessary and typically not useful to put the viscosity of fluids in potential (irrotational) flow to zero. The dimensionless description of potential flows of fluids with a nonzero viscosity depends on the Reynolds number, and the theory of potential flow of an inviscid fluid can be said to rise as the Reynolds number tends to infinity. The theory given here can be described as the theory of potential flows at finite and even small Reynolds numbers.

Joseph / Funada / Wang Potential Flows of Viscous and Viscoelastic Liquids jetzt bestellen!

Weitere Infos & Material


1. Introduction; 2. Historical notes; 3. Boundary conditions for viscous fluids; 4. Helmholtz decomposition coupling rotational to irrotational flow; 5. Harmonic functions which give rise to vorticity; 6. Radial motions of a spherical gas bubble in a viscous liquid; 7. Rise velocity of a spherical cap bubble; 8. Ellipsoidal model of the rise of a Taylor bubble in a round tube; 9. Rayleigh-Taylor instability of viscous fluids; 10. The force on a cylinder near a wall in viscous potential flows; 11. Kelvin-Helmholtz instability; 12. Irrotational theories of gas-liquid flow: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF) and dissipation method (DM); 13. Rising bubbles; 14. Purely irrotational theories of the effect of the viscosity on the decay of waves; 15. Irrotational Faraday waves on a viscous fluid; 16. Stability of a liquid jet into incompressible gases and liquids; 17. Stress induced cavitation; 18. Viscous effects of the irrotational flow outside boundary layers on rigid solids; 19. Irrotational flows which satisfy the compressible Navier-Stokes equations; 20. Irrotational flows of viscoelastic fluids; 21. Purely irrotational theories of stability of viscoelastic fluids; 22. Numerical methods for irrotational flows of viscous fluid; Appendices; References; List of illustrations; List of tables.


Joseph, Daniel
Daniel Joseph is a professor of Aerospace Engineering and Mechanics at the University of Minnesota. He is the holder of patents on the wave-speed meter, the spinning rod interfacial tensiometer, and the spinning drop tensiometer, among others. Dr Joseph is the editor of the International Journal of Multiphase Flow and has authored five books and more than 300 articles.

Wang, Jing
Jing Wang earned his B.S. from Tsinghua University in China in 2000 and his Ph.D. in Aerospace Engineering from the University of Minnesota in 2005. He received the 'Best Dissertation Award' in Physical Sciences and Engineering for 2006 at the University of Minnesota.

Funada, Toshio
Toshio Funada is a professor of Digital Engineering at the Numazu College of Technology in Japan. He has studied at Shinshu University and Osaka University in Japan.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.