Buch, Englisch, 416 Seiten, Format (B × H): 156 mm x 230 mm, Gewicht: 572 g
Buch, Englisch, 416 Seiten, Format (B × H): 156 mm x 230 mm, Gewicht: 572 g
ISBN: 978-0-8058-5919-5
Verlag: Taylor & Francis
Important features of this volume include discussions on:
*how problems are represented by the problem solvers and how perception, attention, memory, and various forms of reasoning impact the management of information and the search for solutions;
*how academics have applied lessons from cognitive science to better prepare students to solve complex scientific problems;
*gender issues in science and engineering classrooms; and
*questions to guide future problem-solving research.
The innovative methods explored in this practical volume will be of significant value to science and engineering educators and researchers, as well as to instructional designers.
Zielgruppe
Postgraduate and Professional
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Contents: Introduction. Part I: Cognitive Science Views of Problem Solving. D. Jonassen, What Makes Scientific Problem Solving Complex. J. Funcke, P. Frensch, Complex Problem Solving—The European Perspective: 10 Years After. J. Price, R. Catrambone, R. Engle, When Capacity Matters: The Role of Working Memory in Problem Solving. F. Oswald, Z. Hambrick, On Keeping All the Plates Spinning: Understanding and Predicting Multi-Tasking Performance. P. Cheng, Representing Complex Problems: A Representational Epistemic Approach. M. Rosen, S.M. Fiore, E. Salas, Of Memes and Teams: Exploring the Memetics of Team Problem Solving. Part II: Scientific Views of Problem Solving. C. Ogilvie, Moving Students From Simple to Complex Problem Solving. S. Ryan, J. Jackman, P. Kumsaikaew, V. Dark, S. Olafsson, Use of Information in Collaborative Problem Solving. G. Gray, F. Costanzo, Making Dynamics Interactive. S. Rebello, L. Cui, A. Bennett, D.A. Zollman, D.J. Ozimek, Transfer of Learning in Problem Solving in the Context of Mathematics and Physics. S. Ryan, J. Jackman, S. Olafsson, V. Dark, Meta-Problem Spaces and Problem Structure. M. Ogot, G. Okudan, Educating for Complex Problem Solving Using a Theory of Inventive Problem Solving (TRIZ). A. Bhandari, L. Erickson, M. Steichen, W. Jacoby, Preparing Students to Work Effectively as Members of Interdisciplinary Design Teams. B. Bogue, R. Marra, Addressing Gender in Complex Problem Solving. D. Jonassen, R. Engle, P. Cheng, E. Salas, Part III: Research Agenda for the Future: What We Need to Learn About Complex, Scientific Problem Solving.