Buch, Englisch, 376 Seiten, Format (B × H): 159 mm x 238 mm, Gewicht: 659 g
Principles and Applications
Buch, Englisch, 376 Seiten, Format (B × H): 159 mm x 238 mm, Gewicht: 659 g
ISBN: 978-1-4398-4757-2
Verlag: Taylor & Francis Inc
Despite the practical value of DOT, many engineers from electrical or applied mathematics backgrounds do not have a sufficient understanding of its vast clinical applications and portability value, or its uncommon advantages as a tool for obtaining functional, cellular, and molecular parameters. A collection of the author’s research and experience, this book fuses historical perspective and experiential anecdotes with fundamental principles and vital technical information needed to successfully apply this technology—particularly in medical imaging.
This reference finally outlines how to use DOT to create experimental image systems and adapt the results of laboratory studies for use in clinical applications including:
Early-stage detection of breast tumors and prostate cancer
"Real-time" functional brain imaging
Joint imaging to treat progressive diseases such as arthritis
Monitoring of tumor response
New contrast mechanisms and multimodality methods
This book covers almost every aspect of DOT—including reconstruction algorithms based on nonlinear iterative Newton methods, instrumentation and calibration methods in both continuous-wave and frequency domains, and important issues of imaging contrast and spatial resolution. It also addresses phantom experiments and the development of various image-enhancing schemes, and it describes reconstruction methods based on contrast agents and fluorescence DOT.
Offering a concise description of the particular problems involved in optical tomography, this reference illustrates DOT’s fundamental foundations and the principle of image reconstruction. It thoroughly explores computational methods, forward mathematical models, and inverse strategies, clearly illustrating solutions to key equations.
Zielgruppe
Students, professors, and researchers (both academic and industrial) including biomedical engineering, electrical engineers, chemical engineers, mechanical engineers, computer engineers, physicists, mathematicians, chemists, physicians, and biologists.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Technische Wissenschaften Technik Allgemein Technische Optik, Lasertechnologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Angewandte Optik
Weitere Infos & Material
Introduction
Diffuse Optical Tomography
Image Reconstruction
Reconstruction Algorithms
Introduction/Historical Account
Reconstruction Algorithm
Experimental Materials and Methods
Results
Discussion
Instrumentation and Calibration Methods
Introduction/Historical Account
Single-Wavelength Automatic Scanning DOT System
Three-Wavelength Multi-channel DOT System
Ten-Wavelength 64x64-Channel DOT System
Computational-based Calibration Method
Hybrid Calibration Method
Contrast, Spatial Resolution, and Uniqueness of Inverse Solution
Introduction/Historical Account
Contrast, Spatial Resolution and Multiple Targets
Uniqueness and Cross-talk Issues in DOT
Image Enhancement Schemes
Introduction/Historical Account
Total Variation Minimization Scheme
Dual Mesh Scheme
Adaptive Mesh Scheme
Reconstruction based on the third-order diffusion equations
Modified Newton Method
Fluorescence and Bioluminescence DOT
Introduction/Historical Account
Fluorescence DOT
Fluorescence DOT using an oxygen-sensitive dye
DOT-Guided fluorescence DOT of arbitrarily shaped objects
Bioluminescence DOT
DOT-Guided Bioluminescence Tomography
New Contrast Mechanisms and Multi-Modality Approaches
Introduction/Historical Account
Phase-Contrast DOT
Enhanced Phase-Contrast DOT: Two-Step Multi-Region Approach
Multi-spectral Cellular DOT
Multi-Modality Approaches: Ultrasound Tomography-Guided DOT
Multi-Modality Approaches: X-Ray-Guided DOT
Clinical Applications and Animal Studies
Introduction/Historical Account
Breast Imaging
Joint Imaging
Brain Imaging