Jerenz | Revenue Management and Survival Analysis in the Automobile Industry | E-Book | sack.de
E-Book

E-Book, Englisch, 183 Seiten, eBook

Jerenz Revenue Management and Survival Analysis in the Automobile Industry


2008
ISBN: 978-3-8349-9840-8
Verlag: Betriebswirtschaftlicher Verlag Gabler
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 183 Seiten, eBook

ISBN: 978-3-8349-9840-8
Verlag: Betriebswirtschaftlicher Verlag Gabler
Format: PDF
Kopierschutz: 1 - PDF Watermark



André Jerenz develops a price-based revenue management framework to support retailers in establishing better and more profitable pricing strategies, including assigning an initial asking price and the adjustment of price over time.

Dr. André Jerenz promovierte extern bei Prof. Dr. Ulrich Tüshaus am Lehrstuhl Operations Research an der Universität der Bundeswehr, Hamburg. Er ist als Offizier im Bundesamt für Informationsmanagement und Informationstechnik der Bundeswehr in Koblenz tätig.

Jerenz Revenue Management and Survival Analysis in the Automobile Industry jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Foreword;6
2;Acknowledgements;8
3;Contents;10
4;List of Figures;14
5;List of Tables;16
6;Nomenclature;18
7;Introduction;20
7.1;1.1 Motivation;20
7.2;1.2 Outline and Research Contribution;21
8;Revenue Management and the Automobile Industry;24
8.1;2.1 Concept of Revenue Management;24
8.2;2.2 The Automobile Industry;33
8.3;2.3 Revenue Management in the Automobile Industry;38
8.4;2.4 Price-Based Revenue Management in the Used Car Sector;42
8.5;2.5 Summary;49
9;Modeling the Price-Based Revenue Management Problem;50
9.1;3.1 Introduction;50
9.2;3.2 Basic Continuous-Time Model;54
9.3;3.3 Stochastic Discrete-Time Model;63
9.4;3.4 Finite Price Sets;67
9.5;3.5 Extensions of the Basic Problem;73
9.6;3.6 The Complete Model;78
9.7;3.7 Summary;80
10;Survival Analysis: Estimation of the Price- Response Function;82
10.1;4.1 Reservation Price and Price Response Function;83
10.2;4.2 Survival Analysis;89
10.3;4.3 Parametric Regression Modeling;100
10.4;4.4 Estimation of the Price Response Function;109
10.5;4.5 Summary;115
11;Validation of the Survival Analysis Approach: a Case Study within the Used Car Market;116
11.1;5.1 Introduction;116
11.2;5.2 Used Car Study;118
11.3;5.3 Cox Model;123
11.4;5.4 Accelerated Failure Time Model;135
11.5;5.5 Spline Regression Extended Model;142
11.6;5.6 Presentation of the Extended Log-Logistic Model;149
11.7;5.7 Summary;152
12;Computational Analysis: Proof of Concept;154
12.1;6.1 General Description of the Revenue Management Program;154
12.2;6.2 Case Study for a Selected Used Vehicle;157
12.3;6.3 Assessment of Potential for Profit Enhancement;166
12.4;6.4 Summary;171
13;Conclusions and Further Directions;172
13.1;7.1 Directions for Future Research;172
13.2;7.2 Summary;174
14;References;176
15;Index;186

Revenue Management and the Automobile Industry.- Modeling the Price-Based Revenue Management Problem.- Survival Analysis: Estimation of the Price-Response Function.- Validation of the Survival Analysis Approach: a Case Study within the Used Car Market.- Computational Analysis: Proof of Concept.- Conclusions and Further Directions.


Chapter 5 Validation of the Survival Analysis Approach: a Case Study within the Used Car Market (S. 114-115)

There is hardly anything in the world that someone cannot make a little worse and sell a little cheaper, and the people who consider price alone are that person’s lawful prey.
JOHN RUSKIN (1819–1919)

The objective of the present chapter involves applying survival analysis for estimating individual price response functions. Based on an extensive market study concerning the German used car sector, several models introduced in the previous chapter are fitted to the datasets and their applicability on predicting survival is determined, thereby estimating individual sales probabilities of used vehicles.

5.1 Introduction

In the previous chapter, survival analysis was used to estimate individual price response functions for used vehicles. Hypothesizing that the sale of a used vehicle is in.uenced by internal factors such as the asking price as well as external factors like the market conditions, one way to determine these relationships is to assume a vehicle’s time on the market until a sale occurs as the dependent variable. Then, the in.uence of explanatory variables such as the asking price can be assessed using survival analysis regression. Different models were introduced, including Cox proportional hazards models and accelerated failure time models as two categories of parametric regression modeling.

In this chapter, methods and models stated in the previous chapter are applied on a dataset from a study conducted in the German used car market with the scope of determining explanatory variables and their effect on the failure time of used vehicles. Here, the failure of a used car on the market translates to a sale of the vehicle. Then, based on a .tted model, survival of a speci.c used vehicle, or the probability of its sale, can be estimated with regard to its characteristics and the given market conditions. Furthermore, the survival regression model can be used to determine optimal pricing strategies of a used car retailer, if the asking price has a significant influence on the survival of a used car.

In section 5.2, the market study regarding the German used car market is described and the process of model building is illustrated. Section 5.3 selects and .ts a Cox proportional hazards model on the dataset including an assessment of its adequacy. Afterward, an accelerated failure time model is identi.ed, and the .tted model assessed and validated. In section 5.5, the model that best .ts the data is extended by restricted regression splines to incorporate possible non-linearity in the covariates. The chapter is concluded in section 5.6 by a presentation and discussion of the .nal extended survival model that best .ts the data from the market study. The calculations and plots in this chapter were performed with the R software (R Development Core Team 2006), using the Design and Hmisc library, written by Frank E. Harrell (Harrell 2005, 2007) as well as the Survival library, written by Terry Therneau (Therneau and Lumley 2006).


Dr. André Jerenz promovierte extern bei Prof. Dr. Ulrich Tüshaus am Lehrstuhl Operations Research an der Universität der Bundeswehr, Hamburg. Er ist als Offizier im Bundesamt für Informationsmanagement und Informationstechnik der Bundeswehr in Koblenz tätig.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.