Jeon | International Review of Cell and Molecular Biology | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 315, 344 Seiten

Reihe: International Review of Cell and Molecular Biology

Jeon International Review of Cell and Molecular Biology


1. Auflage 2015
ISBN: 978-0-12-802480-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band Volume 315, 344 Seiten

Reihe: International Review of Cell and Molecular Biology

ISBN: 978-0-12-802480-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



International Review of Cell and Molecular Biology presents comprehensive reviews and current advances in cell and molecular biology. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. The series has a world-wide readership, maintaining a high standard by publishing invited articles on important and timely topics authored by prominent cell and molecular biologists. - Authored by some of the foremost scientists in the field - Provides comprehensive reviews and current advances - Wide range of perspectives on specific subjects - Valuable reference material for advanced undergraduates, graduate students and professional scientists

Jeon International Review of Cell and Molecular Biology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;International Review of Cell and Molecular Biology;2
3;International Review of Cell and Molecular Biology;3
4;International Review of Cell and Molecular BiologyEdited byKWANG W. JEONDepartment of Biochemistry University of TennesseeK ...;4
5;Copyright
;5
6;Contents;6
7;Contributors;10
8;How Rab Proteins Determine Golgi Structure;14
8.1;1. Introduction;15
8.2;2. Rab Proteins and Their Subfamilies;16
8.3;3. Golgi Apparatus and Its Organization;18
8.4;4. Two Major Functional/Phenotypic Classes of Rab Proteins Based on Their Effects on Golgi Ribbon Organization;20
8.5;5. Mechanistic Effect of Rab Proteins on Golgi Ribbon Organization;26
8.5.1;5.1 General Mechanistic Predictions;26
8.5.2;5.2 Rab6 and the Role of Individual Effectors;26
8.5.3;5.3 Role of Rab33b in Rab6-Dependent Golgi Ribbon Organization;29
8.5.4;5.4 Opposing Effects of Rab41 and Rab6 on Golgi Ribbon Organization;29
8.6;6. Conclusions and Perspectives;30
8.7;Acknowledgments;31
8.8;References;31
9;Amyotrophic Lateral Sclerosis as a Spatiotemporal Mislocalization Disease: Location, Location, Location;36
9.1;1. Introduction;37
9.2;2. Amyotrophic Lateral Sclerosis;38
9.2.1;2.1 Models for ALS Research;39
9.3;3. Axonal Transport;41
9.3.1;3.1 Axonal Cytoskeleton;41
9.3.2;3.2 Motor Proteins;44
9.3.3;3.3 Mitochondrial Transport;47
9.4;4. RNA-Binding Proteins;51
9.4.1;4.1 Tar DNA-Binding Protein 43;51
9.4.2;4.2 Fused in Sarcoma;53
9.4.3;4.3 MicroRNA and RBP;53
9.4.4;4.4 Chromosome 9 Open Reading Frame 72;55
9.5;5. Neurotrophic Factors and Their Precursor Forms;56
9.6;6. Death Signals;59
9.6.1;6.1 p75 Neurotrophin Receptor;61
9.6.2;6.2 Death Receptor 6;62
9.6.3;6.3 Fas;62
9.6.4;6.4 Semaphorins;63
9.7;7. Amyloid Precursor Protein;64
9.8;8. Concluding Remarks;65
9.9;Acknowledgments;68
9.10;References;68
11;Malleable Mitochondrion of Trypanosoma brucei;86
11.1;1. Introduction;87
11.2;2. Maintenance and Expression of Genetic Information;89
11.2.1;2.1 kDNA Replication and Maintenance;90
11.2.2;2.2 Mitochondrial RNA Metabolism;94
11.2.2.1;2.2.1 Transcription;94
11.2.2.2;2.2.2 RNA processing;94
11.2.2.3;2.2.3 RNA editing;97
11.2.2.4;2.2.4 RNA turnover;100
11.2.2.5;2.2.5 Mitochondrial tRNA import and modifications;101
11.2.3;2.3 Translation and Ribosomes;105
11.3;3. Mitochondrial Import;107
11.3.1;3.1 Protein Import and Processing;107
11.3.2;3.2 Transport of Metabolites;113
11.3.3;3.3 Transport of Ions;115
11.4;4. Mitochondrial Metabolism;117
11.4.1;4.1 Carbohydrate Metabolism—Krebs Cycle;118
11.4.2;4.2 Oxidative Phosphorylation;122
11.4.3;4.3 Fatty Acid Biosynthesis;126
11.4.4;4.4 Metabolism of Amino Acids;128
11.4.5;4.5 Metabolism of Cofactors;131
11.4.5.1;4.5.1 Heme metabolism;131
11.4.5.2;4.5.2 Fe-S cluster and protein biogenesis;132
11.5;5. Structural Proteins and Fission;137
11.6;6. Concluding Remarks;139
11.7;Acknowledgments;140
11.8;References;140
13;Heredity and Self-Organization: Partners in the Generation and Evolution of Phenotypes;166
13.1;1. Introduction;167
13.2;2. Self-Organization in Biology;169
13.2.1;2.1 Genes versus Cell Numbers;169
13.2.2;2.2 Molecular Self-Organization and DNA;169
13.2.3;2.3 Mechanical Forces and Self-Organization;170
13.2.4;2.4 Self-Organization of Complex Biological Structures;171
13.2.5;2.5 Dynamics;171
13.2.6;2.6 Functional Plasticity May Be Based on Self-Organized Processes at Different Biological Scales;173
13.2.7;2.7 Dynamics: Self-Organized Component of Developmental Robustness;177
13.3;3. Internal Descriptions, Developmental Limitations and Buffering Variation;182
13.3.1;3.1 What Constitutes the Internal Description of Biological Organisms?;182
13.3.2;3.2 “Internal Descriptions” and the Concept of a Genotype–Phenotype Map;183
13.3.3;3.3 Self-Organization and Evolutionary Variation;184
13.3.3.1;3.3.1 Developmental Improbabilities and Drosophila Sex Comb Length;185
13.3.3.2;3.3.2 Self-organization and Pleiotropy;186
13.3.3.3;3.3.3 Reduction in Variation in D. melanogaster Sex Comb Alignment;189
13.4;4. Conclusions;190
13.5;Acknowledgments;191
13.6;References;191
15;Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication;196
15.1;1. Introduction;197
15.2;2. Juxtaposition of Genome Regulatory Elements: Active Chromatin Hub or Active Nuclear Compartment?;199
15.3;3. Dynamic Contacts rather than Rigid Complexes;203
15.4;4. Driving Forces of Communication within Cell Nucleus;207
15.4.1;4.1 Long-Range Interactions and TADs: Communication for Folding or Folding for Communication?;207
15.4.2;4.2 Communication Mediated by Molecular Motors: RNAPolII and Nuclear actin/Myosin I System;212
15.4.3;4.3 Free Diffusion and Macromolecular Crowding;217
15.5;5. Functional Compartmentalization of Eukaryotic Cell Nucleus;219
15.5.1;5.1 Spatial Organization of Eukaryotic Genome: View under Microscope;220
15.5.2;5.2 Functional Nuclear Compartments;223
15.5.2.1;5.2.1 Nuclear compartments (nuclear bodies) that contain DNA;223
15.5.2.1.1;5.2.1.1 Replication factories;223
15.5.2.1.2;5.2.1.2 Transcription factories;224
15.5.2.1.3;5.2.1.3 Polycomb bodies;226
15.5.2.1.4;5.2.1.4 Insulator bodies;227
15.5.2.2;5.2.2 Nuclear compartments (nuclear bodies) that do not contain DNA;227
15.5.2.2.1;5.2.2.1 PML bodies;228
15.5.2.2.2;5.2.2.2 Cajal bodies and histone locus bodies;229
15.5.2.2.3;5.2.2.3 Nuclear speckles;230
15.6;6. Nuclear Compartmentalization and Chromosome Folding: Attempt to Present Integral View;231
15.7;7. Concluding Remarks;237
15.8;Acknowledgments;239
15.9;References;239
16;Modifiers of Membrane Dipole Potentials as Tools for Investigating Ion Channel Formation and Functioning;258
16.1;1. Introduction;259
16.2;2. Lipid Bilayers and Methods Used for Studying Effects of Dipole-Modifying Agents on Membrane Conductance;263
16.2.1;2.1 Electrical Model of Lipid Bilayers;263
16.2.2;2.2 Measurements of Dipole Potential;265
16.3;3. Factors Affecting Magnitude of Membrane Dipole Potential;267
16.3.1;3.1 Membrane Lipid Composition;267
16.3.2;3.2 Adsorption of Dipole-Modifying Agents;269
16.3.2.1;3.2.1 Flavonoids;269
16.3.2.2;3.2.2 Styryl dyes;271
16.3.2.3;3.2.3 Xanthene dyes;272
16.3.2.4;3.2.4 N-acylhomoserine lactones;272
16.3.2.5;3.2.5 Thyroid hormones;273
16.3.2.6;3.2.6 Other bioactive compounds;274
16.3.3;3.3 Microdomains Present within Membranes: Raft-Breaking and Raft-Making Effects of Dipole Modifiers;275
16.4;4. Effect of Dipole Potential on Channel-Forming Activity of Antimicrobial Agents;276
16.4.1;4.1 Lipopeptides;276
16.4.1.1;4.1.1 Syringomycin E;277
16.4.1.2;4.1.2 Surfactin;278
16.4.2;4.2 Peptides;280
16.4.2.1;4.2.1 Gramicidin A;281
16.4.2.2;4.2.2 Alamethicin;282
16.4.2.3;4.2.3 Cecropins;283
16.4.3;4.3 Polyene Macrolides: Amphotericin B;284
16.5;5. Effects Resulting from Modulation of Other Physical Properties of Lipid Bilayers by Dipole-Modifying Agents;285
16.5.1;5.1 Phase Separation in Lipid Bilayers;285
16.5.1.1;5.1.1 Amphotericin B and phase segregation in lipid membranes;286
16.5.1.2;5.1.2 Syringomycin E in sphingolipid-containing membranes;287
16.5.2;5.2 Spontaneous Curvature of Monolayers;289
16.5.2.1;5.2.1 Melittin;290
16.5.2.2;5.2.2 Magainin;291
16.5.2.3;5.2.3 Alamethicin;292
16.5.2.4;5.2.4 Gramicidin A;292
16.6;6. Interaction between Dipole Modifiers and Channel-Forming Molecules;295
16.6.1;6.1 Voltage Gating of Single Alpha-Hemolysin Pore;295
16.6.2;6.2 Amphotericin B-sterol complexes;296
16.7;7. Concluding Remarks;299
16.8;Acknowledgments;299
16.9;References;299
18;Link between Aneuploidy and Chromosome Instability;312
18.1;1. Introduction;312
18.2;2. Effect of Aneuploidy on Cellular Homeostasis;313
18.2.1;2.1 Transcriptome;314
18.2.2;2.2 Proteome;316
18.3;3. Effect of Aneuploidy on Chromosome Stability;317
18.3.1;3.1 DNA Replication and Condensation;319
18.3.2;3.2 Chromosome Segregation;320
18.4;4. Role of Aneuploidy and CIN in Adaptation and Disease;321
18.4.1;4.1 Unicellular Organisms;322
18.4.2;4.2 Multicellular Organisms;323
18.5;5. Conclusions and Perspectives;324
18.6;Acknowledgments;325
18.7;References;326
19;INDEX;332



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.