Buch, Englisch, 1056 Seiten, Format (B × H): 173 mm x 241 mm, Gewicht: 1792 g
Buch, Englisch, 1056 Seiten, Format (B × H): 173 mm x 241 mm, Gewicht: 1792 g
ISBN: 978-0-444-82375-5
Verlag: Elsevier Science
As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Human- und Sozialwissenschaften
- Geisteswissenschaften Geschichtswissenschaft Geschichtliche Themen Wissenschafts- und Universitätsgeschichte
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
Weitere Infos & Material
Abbreviated. Preface. The emergence of topological dimension theory (T. Crilly, D. Johnson). Development of the concept of homotopy (R. Vanden Eynde). Differential forms (V.J. Katz). Weyl and the topology of continuous Groups (T. Hawkins). Absolute neighbourhood retracts and shape theory (S. Mardešić). Geometric aspects in the development of knot theory (M. Epple). Singularities (A.H. Durfee). 3-Dimensional topology up to 1960 (C. McA. Gordon). Graph theory (R.J.Wilson). From combinatorial topology to algebraic topology (I. James). A history of cohomology theory (W.S. Massey). A history of spectral sequences: origins to 1953 (J. McCleary). A history of duality in algebraic topology (J.C. Becker, D.H. Gottlieb). A history of rational homotopy theory (K. Hess). Topologists at conferences (I.M. James). The Japanese school of topology (M. Mimura). Johann Benedikt listing (E. Breitenberger). Luitzen Egbertus Jan Brouwer ( D. van Dalen). Jakob Nielsen and his contributions to topology (V.L. Hansen). Hans Freudenthal (W.T. van Est). Subject Index.