E-Book, Englisch, Band 51, 414 Seiten, eBook
Unmanned Aerial System in Geomatics
E-Book, Englisch, Band 51, 414 Seiten, eBook
Reihe: Lecture Notes in Civil Engineering
ISBN: 978-3-030-37393-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
st
International Conference on Unmanned Aerial System in Geomatics (UASG), held in Roorkee, India on April 6-7, 2019. It covers highly diverse topics, including photogrammetry and remote sensing, surveying, UAV manufacturing, geospatial data sensing, UAV processing, visualization, and management, UAV applications and regulations, geo-informatics and geomatics. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2; A Comparative Study of Drone and High Resolution Satellite Data for Detailed Land Use/Land Cover Mapping;10
2.1;1 Introduction;10
2.2;2 Objectives;12
2.3;3 Study Area;12
2.4;4 Methodology;13
2.5;5 Results and Discussion;14
2.6;6 Conclusions;18
2.7;References;18
3; Assessment of Low-Cost Unmanned Aerial Systems for Engineering Surveys;20
3.1;1 Introduction;20
3.1.1;1.1 Unmanned Aerial Systems;21
3.1.2;1.2 Engineering Surveys;21
3.2;2 Study Area;22
3.3;3 Data Acquisition and Analysis;22
3.3.1;3.1 Instrument Used i.e. UAS;22
3.3.2;3.2 Image Acquisition Process;23
3.3.3;3.3 Analysis;23
3.4;4 Conclusion and Applications;25
3.4.1;4.1 Conclusion;25
3.4.2;4.2 Applications in Civil Engineering;26
3.5;References;27
4; Comparing Sensors for Feature Extraction;28
4.1;1 Introduction;29
4.2;2 Materials and Methods;30
4.3;3 Results;31
4.4;4 Discussion;34
4.5;5 Conclusions;34
4.6;References;35
5; Survey in Closed Environments Through UAS Technology. Methodological Approaches to the Study and Image Processing of Religious Furnishings;36
5.1;1 Introduction;36
5.2;2 Related Works;38
5.2.1;2.1 Case Study;38
5.3;3 TLS and UAV Technology: Problems and Resolutions;40
5.3.1;3.1 Data Processing;42
5.4;4 3D Modelling and Formal-Geometric Analysis;44
5.5;5 Conclusions;44
5.6;References;46
6; Integration of Lidar Data in Topographical Feature Extraction from Very High-Resolution Aerial Imagery;48
6.1;1 Introduction;48
6.2;2 Study Area and Data Resources;49
6.3;3 Methodology;49
6.4;4 Results and Discussions;51
6.5;5 Conclusions;52
6.6;References;52
7; Automatic Extraction of Roads from UAV Using Thresholding and Morphometric Parameters;54
7.1;1 Introduction;54
7.2;2 Study Area;55
7.3;3 Methodology;56
7.4;4 Results;56
7.5;5 Conclusions;59
7.6;References;60
8; Detection of Water Body Using Very High-Resolution UAV SAR and Sentinel-2 Images;61
8.1;1 Introduction;62
8.2;2 Study Area and Data Sources;63
8.3;3 Methodology;63
8.4;4 Results and Analysis;66
8.5;5 Conclusion;67
8.6;References;72
9; Comparative Study on Crop Type Classification Using Support Vector Machine on UAV Imagery;74
9.1;1 Introduction;74
9.1.1;1.1 Support Vector Machine;75
9.2;2 Study Area;77
9.3;3 Datasets and Methodology;78
9.3.1;3.1 Datasets;78
9.3.2;3.2 Methodology;78
9.4;4 Results and Discussion;80
9.4.1;4.1 Orthomosaic;80
9.4.2;4.2 Classification and Accuracy assessment;81
9.5;5 Conclusion;83
9.6;References;83
10; Drone-Based Sensing for Leaf Area Index Estimation of Citrus Canopy;85
10.1;1 Introduction;86
10.2;2 Materials and Methods;87
10.2.1;2.1 Site Description, Ground Truth LAI, and Acquisition of Images from UAV;87
10.2.2;2.2 Green Canopy Cover and LAI Estimation from Drone-Based Images;90
10.3;3 Results and Discussion;92
10.3.1;3.1 Comparison of Estimated LAI with Its Ground Truth;92
10.3.2;3.2 Critical Analysis of the Limiting Factors of LAI Estimation;93
10.4;References;94
11; Dynamics of Target Detection Using Drone Based Hyperspectral Imagery;96
11.1;1 Introduction;97
11.2;2 Method and Materials;97
11.2.1;2.1 Target Detector Algorithms;97
11.2.2;2.2 Experimental Design;99
11.3;3 Results and Discussion;100
11.4;4 Conclusion;101
11.5;References;102
12; Blockchain and UAV: Security, Challenges and Research Issues;103
12.1;1 Introduction;103
12.2;2 Scope and Objective;104
12.3;3 Overview of Blockchain and UAANET;105
12.3.1;3.1 Architecture of Block-Chain;105
12.3.2;3.2 UAV Communication Architectures;105
12.3.3;3.3 UAANET as a Subset of MANET;107
12.3.4;3.4 Model Algorithm to Implement Blockchain in UAANET;107
12.4;4 UAANET Security Requirement and Challenges;108
12.4.1;4.1 Vulnerabilities in UAANETs;108
12.4.2;4.2 Existing Attacks in UAANET;108
12.5;5 Research Issues and Current Projects;109
12.5.1;5.1 UAV and Blockchain Together: Projects Around World;110
12.6;6 Conclusion;110
12.7;References;111
13; Placement Optimization of Surveillance Cameras: Visibility Analysis;112
13.1;1 Introduction;112
13.1.1;1.1 UAV;112
13.1.2;1.2 Visibility Analysis;113
13.1.3;1.3 Camera Surveillance;113
13.1.4;1.4 Isovists in Visibility Analysis;113
13.2;2 Study Area and Datasets;114
13.2.1;2.1 Study Area;114
13.3;3 Methodology and Data Preparation;115
13.3.1;3.1 Flight Planning and Image Acquisition;116
13.3.2;3.2 Image Processing;116
13.3.3;3.3 DSM and Orthomosaic Generation;116
13.3.4;3.4 Data Preparation for the Sample Area;116
13.3.5;3.5 Sample Camera Locations;117
13.3.6;3.6 Model Creation and Application;120
13.3.7;3.7 Visibility Map Generation;122
13.4;4 Results;122
13.5;5 Conclusion;122
13.6;References;124
14; Application of Unmanned Aerial Vehicle (UAV) for Damage Assessment of a Cultural Heritage Monument;125
14.1;1 Introduction;126
14.2;2 Study Area and Data Set;127
14.3;3 Methodology;128
14.4;4 Results and Discussions;130
14.5;5 Conclusion;132
14.6;References;132
15; Conceptual Design and Comparative CFD Analyses on Unmanned Amphibious Vehicle for Crack Detection;134
15.1;1 Introduction;135
15.1.1;1.1 Unmanned Amphibious Vehicle (UAV);135
15.1.2;1.2 Objective;136
15.2;2 Design Methodologies Involved in UAV;136
15.2.1;2.1 Introduction;136
15.2.2;2.2 UAV Requirements—Important Parameters for UAV;137
15.2.3;2.3 Design of an Advanced UAV;137
15.2.4;2.4 Composite Material;138
15.3;3 Computational Analysis Results;138
15.3.1;3.1 Hydrodynamic Analysis;139
15.3.2;3.2 Aerodynamic Analysis;139
15.3.3;3.3 Comparative Analysis;142
15.4;4 Health Monitoring Using Unmanned Amphibious Vehicle;145
15.4.1;4.1 Crack Detection on Dam Using Image Processing;145
15.5;5 Conclusion;149
15.6;References;149
16; Conceptual Design and Optimization of Flexible Landing Gear for Tilt-Hexacopter Using CFD;151
16.1;1 Advanced Multi-rotor UAV;151
16.2;2 Conceptual Design Study;152
16.2.1;2.1 Design Tool;152
16.2.2;2.2 Tilt-Hexacopter Without Landing Gear;152
16.2.3;2.3 Tilt-Hexacopter with Model-1 Landing Gear;153
16.2.4;2.4 Tilt-Hexacopter with Model-2 Landing Gear;154
16.3;3 Numerical Simulation;155
16.3.1;3.1 Introduction;155
16.3.2;3.2 Boundary Condition;156
16.3.3;3.3 Result;157
16.3.4;3.4 Comparative Analysis of Forces;167
16.4;4 Conclusion;173
16.5;References;174
17; Review of Inpainting Techniques for UAV Images;175
17.1;1 Introduction;175
17.1.1;1.1 Image Inpainting Problem;176
17.2;2 Image Inpainting Techniques;177
17.2.1;2.1 Diffusion Based Image Inpainting;177
17.2.2;2.2 Texture Based Image Inpainting;178
17.2.3;2.3 Exemplar Based Inpainting;179
17.2.4;2.4 Hybrid Based Inpainting;180
17.2.5;2.5 CNN based inpainting;182
17.3;3 Quality Assessment Measures for Inpainted Image;182
17.3.1;3.1 Structure Based;184
17.3.2;3.2 Saliency Based;185
17.4;4 Conclusion;187
17.5;References;187
18; A Fuzzy Sliding Mode Control Design for Quadcopter;190
18.1;1 Introduction;190
18.2;2 Mathematical Model of Quadcopter;191
18.3;3 Design Procedure of Controller;192
18.4;4 Results and Discussion;194
18.5;5 Conclusions;196
18.6;References;198
19; Unmanned Aerial Vehicles: Vulnerability to Cyber Attacks;200
19.1;1 Introduction;200
19.2;2 Vulnerabilities;201
19.2.1;2.1 Transceiver Level;201
19.2.2;2.2 Control Center Level;202
19.2.3;2.3 Communication Channel Level;202
19.3;3 Types of Attacks;202
19.3.1;3.1 Active Attacks;203
19.3.2;3.2 Passive Attacks;203
19.4;4 Attacks and Their Risk Factors;203
19.4.1;4.1 Man-in-the-Middle Attack;203
19.4.2;4.2 Denial of Service Attack;205
19.4.3;4.3 Command Injection Attack;205
19.4.4;4.4 Privilege Escalation Attack;206
19.4.5;4.5 IP Spoofing Attack;206
19.5;5 Cyber Attacks on UAVs;206
19.6;6 Prevention of Vulnerabilities in UAV;207
19.6.1;6.1 Communication Channel Level;207
19.6.2;6.2 Transceiver Level;207
19.6.3;6.3 Control Center Level;207
19.7;7 Results;208
19.8;8 Conclusion;208
19.9;References;209
20; Perpetual Solar Potential of a Village by Machine Learning and Feature Extraction in UAV;211
20.1;1 Introduction;211
20.1.1;1.1 Study Area;212
20.2;2 Methodology and Discussion;212
20.2.1;2.1 Data Required;212
20.2.2;2.2 Solar Radiation and Potential;213
20.3;3 Estimation;214
20.3.1;3.1 Automatic Feature Extraction Technique;216
20.4;4 Suitable Location of Solar Panels;217
20.5;5 Conclusion;218
20.6;References;221
21; Comparison of Performance of Artificial Neural Network (ANN) and Random Forest (RF) in the Classification of Land Cover Zones of Urban Slum Region;222
21.1;1 Introduction;222
21.2;2 Study Area;224
21.3;3 Methodology;224
21.3.1;3.1 Workflow;224
21.3.2;3.2 Data Collection and Preprocessing;224
21.3.3;3.3 Artificial Neural Network (ANN);225
21.3.4;3.4 Random Forest;228
21.3.5;3.5 Accuracy Assessment;229
21.4;4 Result and Discussion;230
21.5;5 Conclusion;232
21.6;References;232
22; Identification of Urban Slums Using Classification Algorithms—A Geospatial Approach;234
22.1;1 Introduction;235
22.1.1;1.1 Identification of Urban Slums;235
22.1.2;1.2 Analysis of Point Cloud Information;236
22.1.3;1.3 Classification Algorithms—An Overview;236
22.2;2 Study Area and Datasets;237
22.3;3 Methods;238
22.3.1;3.1 Selection of Training Samples;238
22.3.2;3.2 Orthomosaic Dataset Classification;239
22.3.3;3.3 Processing LAS Dataset;242
22.4;4 Results and Discussion;243
22.4.1;4.1 Analysis of Classified Results;243
22.4.2;4.2 Accuracy Assessment;243
22.4.3;4.3 Analysis of Point Cloud Classified Results;243
22.4.4;4.4 Validating Classified Results from Orthomosaic and Point Cloud Datasets;245
22.4.5;4.5 Discussion;247
22.4.6;4.6 Future Works;248
22.5;5 Conclusion;248
22.6;References;248
23; Estimation of Forest Tree Heights and Crown Diameter Using High Resolution Images from UAV: A Case Study of Kalesar, Haryana;250
23.1;1 Introduction;250
23.2;2 Study Area and Dataset;251
23.3;3 Methodology;252
23.3.1;3.1 Creation of Canopy Height Model;254
23.3.2;3.2 Calculation of Tree Heights;254
23.3.3;3.3 Inverse Watershed Segmentation;256
23.4;4 Results and Discussion;256
23.4.1;4.1 Canopy Height Model;256
23.4.2;4.2 Estimated Height of Forest Trees;257
23.4.3;4.3 Estimated Crown Diameter;258
23.5;5 Conclusion;258
23.6;References;259
24; Object Based Automatic Detection of Urban Buildings Using UAV Images;261
24.1;1 Introduction;262
24.2;2 Study Area and Datasets;263
24.3;3 Methodology;263
24.3.1;3.1 Object Based Classification;265
24.3.2;3.2 Multiresolution Segmentation;265
24.3.3;3.3 Rule Based Classification;266
24.4;4 Accuracy Assessment;267
24.5;5 Results and Analysis;268
24.5.1;5.1 Object Based Image Classification;268
24.5.2;5.2 Multiresolution Segmentation;268
24.5.3;5.3 Rule Based Classification;269
24.5.4;5.4 Accuracy Assessment;270
24.6;6 Discussion;271
24.7;7 Conclusion;272
24.8;References;272
25; Micro Level Hydrological Planning and Assessment of Tank Irrigation System;275
25.1;1 Introduction;276
25.2;2 Study Area;276
25.3;3 Methodology;277
25.3.1;3.1 UAV Images;278
25.3.2;3.2 Channel Extraction;278
25.3.3;3.3 Rainfall-Runoff Modelling;279
25.3.4;3.4 Crop Water Requirement;280
25.4;4 Results and Discussion;281
25.4.1;4.1 Channel Extraction;281
25.4.2;4.2 Rainfall-Runoff Modelling;281
25.4.3;4.3 Crop Water Requirement;281
25.5;5 Conclusion;283
25.6;References;284
26; Cost-Effective Real-Time Aerial Surveillance System Using Edge Computing;285
26.1;1 Introduction;285
26.2;2 Related Work;286
26.3;3 Proposed Methodology;287
26.3.1;3.1 System Overview;287
26.3.2;3.2 Edge Computing On-Board Motion Detection;289
26.3.3;3.3 Cloud Based Object Detection;289
26.3.4;3.4 User Interface;290
26.4;4 Experimental Result and Analysis;290
26.4.1;4.1 Experimental Setup;290
26.4.2;4.2 Results and Analysis;292
26.5;5 Conclusion;294
26.6;References;295
27; The Potential of UAV Based Remote Sensing for Monitoring Hindu Kush Himalayan Glaciers;296
27.1;1 Introduction;297
27.2;2 Literature Review;298
27.3;3 Changes in Himalayan Glacier and the Need for UAV Based Studies;299
27.4;4 Applications of UAV for Monitoring Himalayan Glacier;300
27.4.1;4.1 Mass Balance Analysis;300
27.4.2;4.2 Monitoring Debris-Covered Glaciers;301
27.4.3;4.3 GLOF Studies;302
27.4.4;4.4 Temporal Change Analysis;302
27.4.5;4.5 Geomorphological Mapping;303
27.4.6;4.6 Other Applications;303
27.5;5 Benefits and Challenges;304
27.6;6 Conclusion;304
27.7;References;305
28; A Review of UAV Regulations and Policies in India;310
28.1;1 Introduction;310
28.2;2 Background;311
28.3;3 Methodology;311
28.4;4 Database;312
28.5;5 International Context: UAV Regulation Across the World;312
28.6;6 Analysis;312
28.7;7 National Context: UAV Regulation in India;313
28.8;8 Current Regulations (Drone Policy 1.0);313
28.9;9 Proposed Regulations (Drone Policy 2.0);318
28.10;10 Future Trends and Challenges;319
28.11;11 Conclusion;320
28.12;References;320
29; Multi Frequency Polarimetric Decomposition of UAVSAR Data;321
29.1;1 Introduction;322
29.2;2 Study Area;322
29.3;3 Dataset;323
29.4;4 Methodology;324
29.5;5 Results;328
29.6;References;331
30; Analyzing the Effect of Distribution Pattern and Number of GCPs on Overall Accuracy of UAV Photogrammetric Results;332
30.1;1 Introduction;333
30.2;2 Related Work;333
30.3;3 Methodology;334
30.4;4 Workflow;335
30.4.1;4.1 Number of GCPs and their Distribution Pattern;336
30.5;5 Preprocessing;338
30.6;6 Results and Discussions;339
30.6.1;6.1 Quantitative Analysis;339
30.6.2;6.2 Qualitative Analysis;343
30.7;7 Conclusion;346
30.8;References;346
31; CityGML Based 3D Modeling of Urban Area Using UAV Dataset for Estimation of Solar Potential;348
31.1;1 Introduction;348
31.2;2 Study Area and Data Used;350
31.2.1;2.1 Study Area;350
31.2.2;2.2 Data Used;350
31.3;3 Methodology;351
31.4;4 Results and Discussion;352
31.4.1;4.1 City Information Model Geodatabase;352
31.4.2;4.2 Normalized Differential Surface Model (nDSM);352
31.4.3;4.3 Building and Tree Height Estimation;353
31.4.4;4.4 CityGML Based 3D Urban City Model;353
31.4.5;4.5 Shadow Analysis;355
31.4.6;4.6 Solar Potential Estimation;355
31.5;5 Conclusion;360
31.6;References;360
32; Comparative Computational Analysis on High Stable Hexacopter for Long Range Applications;361
32.1;1 Multi-rotor UAV;361
32.1.1;1.1 Studies on Inclined Arm Hexacopter;362
32.2;2 Conceptual Design;362
32.2.1;2.1 Design Stability;362
32.2.2;2.2 Modeling of Conceptual Design in CATIA;362
32.3;3 Numerical Simulation;365
32.3.1;3.1 Initialization of Numerical Simulation;365
32.3.2;3.2 Boundary Conditions;365
32.4;4 Result and Discussion;380
32.4.1;4.1 At 5 m/s;380
32.4.2;4.2 At 10 m/s;381
32.5;5 Conclusion;381
32.6;References;382
33; A Summarization of Collision Avoidance Techniques for Autonomous Navigation of UAV;384
33.1;1 Introduction;384
33.2;2 Related Work;385
33.3;3 Review on Collision Avoidance Methods;386
33.3.1;3.1 Geometry Based Collision Avoidance Methods;387
33.3.2;3.2 Sense and Avoid Collision Avoidance Methods;388
33.3.3;3.3 Optimization-Based Collision Avoidance Methods;388
33.3.4;3.4 Potential Field Collision Avoidance Approaches;389
33.3.5;3.5 Vision Based Collision Avoidance Methods;389
33.4;4 Summary;390
33.5;5 Conclusion;390
33.6;References;390
34; Developing Intelligent Fire Alarm System and Need of UAV;393
34.1;1 Introduction;394
34.2;2 Background;394
34.3;3 Developing Intelligent Fire Alarm System;395
34.4;4 Technical Specification of the Prototype of IFD Is as Follows;398
34.5;5 Overall Algorithm for the UAV-IFAS;398
34.6;6 Results and Discussion;400
34.7;7 Conclusion;402
34.8;References;404
35; Smart Agriculture: The Age of Drones in Agriculture;405
35.1;1 Introduction;406
35.1.1;1.1 LiDAR;406
35.1.2;1.2 Multi-spectral and Hyper-spectral;406
35.1.3;1.3 Thermal;406
35.2;2 Advantages;407
35.3;3 Prior Research;407
35.3.1;3.1 Honeycomb AgDrone System;408
35.3.2;3.2 EBEE SQ-SenseFly;408
35.3.3;3.3 DJI Agras MG-1;409
35.4;4 Concept and Methodology;410
35.5;5 Future Work;412
35.6;6 Summary;412
35.7;References;414