E-Book, Englisch, 592 Seiten, Web PDF
ISBN: 978-1-4832-6304-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Measure and Integral;4
3;Copyright Page;5
4;Table of Contents;6
5;PREFACE;10
6;CHAPTER 0. BASIC NOTIONS AND NOTATION;18
6.1;1. SETS, RELATIONS, AND MAPPINGS;18
6.2;2. VECTOR SPACES AND VECTOR LATTICES. BANACH SPACES;29
6.3;3. TOPOLOGICAL SPACES;36
7;CHAPTER I. POSITIVE CONTENTS AND MEASURES;43
7.1;1. CONTENTS ON SET RINGS;43
7.2;2. s-CONTENTS;51
7.3;3. EUDOXOS EXTENSION OF CONTENTS;55
7.4;4. s-RINGS, LOCAL s-RINGS, AND s-FIELDS;59
7.5;5. UNIQUENESS OF EXTENSION OF s-CONTENTS;66
7.6;6. THE HAHN-BANACH THEOREM;68
7.7;7. ELEMENTARY DOMAINS;71
7.8;8. MEASURES ON ELEMENTARY DOMAINS;75
7.9;9. RIEMANN (EUDOXOS) EXTENSION OF POSITIVE MEASURES;80
7.10;10. MEASURE SPACES OVER TOPOLOGICAL SPACES;84
7.11;11. THE EXTENSION PROBLEM FOR MEASURE SPACES;87
8;CHAPTER II. EXTENSION OF s-CONTENTS AFTER CARATHÉODORY;89
8.1;1. THE OUTER CONTENT DERIVED FROM A GIVEN CONTENT;89
8.2;2. ADDITIVE DECOMPOSERS;93
8.3;3. ROUTINE EXTENSION FROM LOCAL s-RINGS TO s-RINGS;97
8.4;4. MINIMAL EXTENSION TO A s-FIELD;98
8.5;5. DEFINITION OF A s-CONTENT FROM LOCAL DATA;99
8.6;6. COMPLETION;101
9;CHAPTER III. EXTENSION OF POSITIVE s- AND t-MEASURES, AFTER DANIELL;105
9.1;1. EXTENSION STEP I: s-UPPER AND s-LOWER FUNCTIONS, MONOTONE EXTENSION;105
9.2;2. EXTENSION STEP II: SQUEEZING-IN AND THE DEFINITION OF INTEGRABLE FUNCTIONS;112
9.3;3. THE UPPER AND THE LOWER INTEGRAL;115
9.4;4. NULLFUNCTIONS AND NULLSETS;119
9.5;5. BASIC THEOREMS FOR THE INTEGRAL;124
9.6;6. THE s-CONTENT DERIVED FROM A s-MEASURE;134
9.7;7. t-EXTENSION OF A t-MEASURE;140
9.8;8. MEASURABILITY OF REAL AND COMPLEX FUNCTIONS;142
9.9;9. MEASURABILITY AND INTEGRABILITY;149
9.10;10. INTEGRATION OF COMPLEX-VALUED FUNCTIONS;151
9.11;11. THE REAL AND THE COMPLEX HILBERT SPACE L2;153
9.12;12. STOCHASTIC CONVERGENCE AND UNIFORM INTEGRABILITY;157
10;CHAPTER IV. TRANSFORM OF s-CONTENTS;165
10.1;1. MEASURABLE MAPPINGS;167
10.2;2. TRANSFORM OF s-ADDITIVE FUNCTIONS;171
10.3;3. ERGODIC THEOREMS;175
10.4;4. KERNELS;198
11;CHAPTER V.
CONTENTS AND MEASURES IN TOPOLOGICAL SPACES. PART I: REGULARITY;213
11.1;1. THE GENERAL CONCEPT OF REGULARITY;213
11.2;2. REGULARITY OF s-CONTENTS IN TOPOLOGICAL SPACES;217
11.3;3. REGULARITY OF s-CONTENTS IN COMPACT SPACES;218
11.4;4. REGULARITY OF s-CONTENTS IN LOCALLY COMPACT SPACES;222
11.5;5. REGULARITY IN POLISH SPACES;226
12;CHAPTER VI. CONTENTS AND MEASURES IN PRODUCT SPACES;229
12.1;1. SET SYSTEMS IN PRODUCT SPACES;230
12.2;2. TWO FACTORS;236
12.3;3. FINITELY MANY FACTORS;243
12.4;4. COUNTABLY MANY FACTORS;246
12.5;5. ARBITRARILY MANY FACTORS;250
12.6;6. INDEPENDENCE;259
12.7;7. MARKOVIAN SEMIGROUPS AND THEIR PATH STRUCTURE;263
13;CHAPTER VII. SET FUNCTIONS IN GENERAL;282
13.1;1. BASIC NOTIONS FOR SET FUNCTIONS;283
13.2;2. THE ADDITIVE AND s-ADDITIVE PARTS OF A SUPERADDITIVE
SET FUNCTION;287
13.3;3. s-ADDITIVITY. THE VITALI–HAHN–SAKS THEOREM;290
13.4;4. TOTAL VARIATION;296
14;CHAPTER VIII. THE VECTOR LATTICE OF SIGNED CONTENTS;299
14.1;1. SIGNED CONTENTS AND SIGNED s-CONTENTS;300
14.2;2. HAHN DECOMPOSITIONS;307
14.3;3. ABSOLUTE CONTINUITY OF SIGNED s-CONTENTS;309
14.4;4. LEBESGUE DECOMPOSITIONS;313
14.5;5. THE RADON-NIKODYM THEOREM FOR SIGNED s-CONTENTS WITH FINITE TOTAL VARIATION;316
14.6;6. CONDITIONAL EXPECTATIONS;321
14.7;7. MARTINGALES, SUBMARTINGALES, AND SUPERMARTINGALES;327
14.8;8. THE RADON-NIKODYM PROBLEM;335
15;CHAPTER IX. THE VECTOR LATTICE OF SIGNED MEASURES;342
15.1;1. ABSTRACT VECTOR LATTICES AND THEIR DUALS;342
15.2;2. SIGNED MEASURES;349
15.3;3. ABSOLUTE CONTINUITY OF MEASURES;354
15.4;4. SIGNED CONTENTS AND SIGNED MEASURES;357
16;CHAPTER X.
THE SPACES Lp;361
16.1;1. THE SPACES Lpm (1. p . p 8);362
16.2;2. DUALITY OF THE SPACES Lmp (1. p . 8);367
17;CHAPTER XI. CONTENTS AND MEASURES IN TOPOLOGICAL SPACES. PART II: THE WEAK TOPOLOGY;374
17.1;1. THE WEAK TOPOLOGY FOR s-CONTENTS IN ARBITRARY TOPOLOGICAL SPACES;375
17.2;2. THE WEAK TOPOLOGY FOR s-CONTENTS IN POLISH SPACES;383
18;CHAPTER XII. THE HAAR MEASURE ON LOCALLY COMPACT
GROUPS;391
18.1;1. THE HAAR MEASURE ON COMPACT GROUPS;392
18.2;2. DEFINITION AND BASIC MACHINERY OF LOCALLY COMPACT GROUPS;400
18.3;3. THE HAAR MEASURE ON LOCALLY COMPACT GROUPS;402
19;CHAPTER XIII. SOUSLIN SETS, ANALYTIC SETS, AND CAPACITIES;419
19.1;1. SOUSLIN EXTENSIONS;420
19.2;2. SOUSLIN SETS AND ANALYTIC SETS IN POLISH SPACES;428
19.3;3. CAPACITIES;438
19.4;4. THE CAPACITY APPROACH TO s-CONTENT EXTENSION;447
19.5;5. THE MEASURABLE CHOICE THEOREM;449
20;CHAPTER XIV.
ATOMS, CONDITIONAL ATOMS, AND ENTROPY;453
20.1;1. ATOMS AND CONDITIONAL ATOMS;453
20.2;2. ENTROPY;464
21;CHAPTER XV. CONVEX COMPACT SETS AND THEIR EXTREMAL POINTS;474
21.1;1. LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES;475
21.2;2. BARYCENTERS;483
21.3;3. APPLICATIONS;495
22;CHAPTER XVI.
LIFTING;501
22.1;1. THE NOTION AND EXISTENCE OF A LIFTING;502
22.2;2. STRONG LIFTING;512
22.3;3. APPLICATIONS;516
23;APPENDIX A: THE PERRON-WARD INTEGRAL AND RELATED CONCEPTS;532
23.1;1. NOTATIONS;533
23.2;2. THE S-INTEGRAL;534
23.3;3. THE V-INTEGRAL;536
23.4;4. THE PERRON-WARD INTEGRAL;538
23.5;5. MONOTONE CONVERGENCE;541
23.6;6. RELATION TO THE DANIELL INTEGRAL;543
23.7;7. SOME RESULTS ON THE S-INTEGRAL;548
24;APPENDIX B:
CONTENTS WITH GIVEN MARGINALS;551
24.1;1. THE FORD-FULKERSON THEOREM;551
24.2;2. MATRICES WITH GIVEN MARGINALS;555
24.3;3. CONTENTS AND s-CONTE NTS WITH GIVEN MARGINALS;557
24.4;4. RESULTS INVOLVING TOPOLOGY;562
25;SELECTED BIBLIOGRAPHY;566
26;INDEX;578
27;Probability and Mathematical Statistics;593