Buch, Englisch, 210 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g
Theory and Applications
Buch, Englisch, 210 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g
ISBN: 978-1-4419-5056-7
Verlag: Springer US
This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).
The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.
is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.
Zielgruppe
Research
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
Weitere Infos & Material
1. Basics.- 2. Independent Component Analysis.- 3. A Unifying Information-Theoretic Framework for ICA.- 4. Blind Separation of Time-Delayed and Convolved Sources.- 5. ICA Using Overcomplete Representations.- 6. First Steps towards Nonlinear ICA.- 7. Biomedical Applications of ICA.- 8. ICA for Feature Extraction.- 9. Unsupervised Classification with ICA Mixture Models.- 10. Conclusions and Future Research.- About the author.