Ichimaru | Strongly Coupled Plasma Physics | E-Book | sack.de
E-Book

E-Book, Englisch, 732 Seiten, Web PDF

Ichimaru Strongly Coupled Plasma Physics

Proceedings of Yamada Conference XXIV on Strongly Coupled Plasma Physics, Lake Yamanaka, Japan, August 29-September 2, 1989
1. Auflage 2013
ISBN: 978-1-4832-7515-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of Yamada Conference XXIV on Strongly Coupled Plasma Physics, Lake Yamanaka, Japan, August 29-September 2, 1989

E-Book, Englisch, 732 Seiten, Web PDF

ISBN: 978-1-4832-7515-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Strongly Coupled Plasma Physics covers the proceedings of the 24th Yamada Conference on Strongly Coupled Plasma Physics, held from August 29 to September 2, 1989 at Hotel Mount Fuji near Lake Yamanaka on the outskirts of Tokyo. The book focuses on the reactions, technologies, interactions, and transformations of charged particles. The selection first offers information on phase transitions in dense astrophysical plasmas and plasma thermodynamics and the evolution of brown dwarfs and planets, as well as solidification of dense astrophysical plasmas, evolution of brown dwarfs, and structure of Jupiter. The text then examines the discovery of low mass objects in Taurus and topics in X-ray astronomy from observations with GINGA. The publication ponders on proton abundance in hot neutron star matter; thermonuclear reaction rates of dense carbon-oxygen mixtures in white dwarfs; and quantum simulation of superconductivity. The text also examines dynamic simulation of mixed quantum-classical systems and Monte-Carlo simulations for the surface properties of the strongly coupled one-component plasma. The selection is a dependable reference for readers interested in strongly coupled plasma physics.

Ichimaru Strongly Coupled Plasma Physics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Strongly Coupled Plasma Physics;2
3;Copyright Page;3
4;Table of Contents;14
5;PREFACE;4
6;LIST OF COMMITTEES;6
7;OPENING ADDRESS;8
8;WELCOME ADDRESS;10
9;YAMADA SCIENCE FOUNDATION AND THE SCOPE OF YAMADA CONFERENCES;12
10;EXECUTIVE MEMBERS OF YAMADA SCIENCE FOUNDATION;13
11;Part I: Astrophysics;24
11.1;CHAPTER 1. PHASE TRANSITIONS IN DENSE ASTROPHYSICAL PLASMAS;26
11.1.1;1. INTRODUCTION;26
11.1.2;2. SOLIDIFICATION OF DENSE ASTROPHYSICAL PLASMAS;27
11.1.3;3. FREEZING OF C/0 WHITE DWARFS AND THE AGE OF THE GALAXY;29
11.1.4;4. THE POSSIBILITY OF Fe/H PHASE SEPARATION IN LOW MASS STARS;30
11.1.5;5. H/He PHASE SEPARATION IN GIANT PLANETS;32
11.1.6;6. THE METALLIZATION OF H;33
11.1.7;7. SUMMARY AND CONCLUSIONS;37
11.1.8;ACKNOWLEDGEMENTS;37
11.1.9;REFERENCES;38
11.2;CHAPTER 2. PLASMA THERMODYNAMICS AND THE EVOLUTION OF BROWN DWARFS AND PLANETS;44
11.2.1;1. INTRODUCTION;44
11.2.2;2. EVOLUTION OF BROWN DWARFS;45
11.2.3;3. STRUCTURE OF JUPITER;51
11.2.4;4. CONCLUSIONS;53
11.2.5;ACKNOWLEDGMENT;54
11.2.6;REFERENCES;54
11.3;CHAPTER 3. DISCOVERY OF LOW MASS OBJECTS IN TAURUS;56
11.3.1;I. INTRODUCTION;56
11.3.2;II. OBSERVATIONS;57
11.3.3;III. DISCUSSION;60
11.3.4;IV. CONCLUSIONS;64
11.3.5;REFERENCES;65
11.4;CHAPTER 4. TOPICS IN X-RAY ASTRONOMY FROM OBSERVATIONS WITH GINGA;66
11.4.1;1. INTRODUCTION;66
11.4.2;2. THIN HOT PLASMAS IN ASTROPHYSICS;69
11.4.3;3. SELF-SIMILAR VARIABILITY IN COMPACT X-RAY SOURCES;72
11.4.4;ACKNOWLEDGEMENT;76
11.4.5;References;77
11.5;CHAPTER 5. PROTON ABUNDANCE IN HOT NEUTRON STAR MATTER;78
11.5.1;1. INTRODUCTION;78
11.5.2;2. APPROACH;78
11.5.3;3. NUMERICAL RESULTS AND DISCUSSION;79
11.5.4;4. CONCLUDING REMARKS;81
11.5.5;ACKNOWLEDGEMENT;81
11.5.6;REFERENCES;81
11.6;CHAPTER 6. THERMONUCLEAR REACTION RATES OF DENSE CARBON-OXYGEN MIXTURES IN WHITE DWARFS;82
11.6.1;REFERENCES;85
12;Part II:Computer Simulations of Quantum and Classical Many-Body Systems;86
12.1;CHAPTER 7. QUANTUM MONTE CARLO SIMULATION OF HYDROGEN PLASMAS;88
12.1.1;1 INTRODUCTION;88
12.1.2;2 THE PATH-INTEGRAL ALGORITHM;89
12.1.3;3 TWO ELECTRONS AND TWO PROTONS;90
12.1.4;4 EIGHT ELECTRONS AND EIGHT PROTONS;99
12.1.5;5 CONCLUSIONS;102
12.1.6;ACKNOWLEDGMENTS;102
12.1.7;References;103
12.2;CHAPTER 8. QUANTUM SIMULATION OF SUPERCONDUCTIVITY;104
12.2.1;1. Introduction;104
12.2.2;2. Hubbard Model;105
12.2.3;3. Extension of the Hubbard Model;106
12.2.4;4. Strong Coupling Hamiltonians;108
12.2.5;5. On the Fractional Statistics;110
12.2.6;6. Summary and Future Problems;112
12.2.7;References;112
12.3;CHAPTER 9. DYNAMIC SIMULATION OF MIXED QUANTUM-CLASSICALSYSTEMS;116
12.3.1;1. INTRODUCTION;116
12.3.2;2. QUANTUM MOLECULAR DYNAMICS METHOD;117
12.3.3;3. AN EXCESS ELECTRON IN A DENSE HELIUM GAS;118
12.3.4;ACKNOWLEDGEMENTS;122
12.3.5;REFERENCES;122
12.4;CHAPTER 10. MONTE CARLO SIMULATION STUDY OF DENSE PLASMAS: FREEZING, TRANSPORT AND NUCLEAR REACTION;124
12.4.1;1. INTRODUCTION;124
12.4.2;2. FREEZING TRANSITION;125
12.4.3;3. CONDUCTIVITIES;132
12.4.4;4. RATES OF NUCLEAR REACTIONS;132
12.4.5;5. MULTI-COMPONENT PLASMAS;135
12.4.6;REFERENCES;135
12.5;CHAPTER 11. STATIC AND DYNAMIC PROPERTIES OF CONFINED, COLD ION PLASMAS: MD SIMULATIONS;136
12.5.1;DYNAMIC EFFECTS;140
12.5.2;REFERENCES;147
12.6;CHAPTER 12. MOLECULAR DYNAMICS STUDY OF RAPIDLY QUENCHED OCP;148
12.6.1;1. INTRODUCTION;148
12.6.2;2. MD SIMULATION OF RAPID-QUENCHING PROCESS;148
12.6.3;3. TOPOLOGICAL CHARACTERISTICS OF THE SHORT-RANGE ORDER IN THE QUENCHED STAT;150
12.6.4;REFERENCES;151
12.7;CHAPTER 13. MONTE-CARLO SIMULATIONS FOR THE SURFACE PROPERTIES OF THE STRONGLY COUPLED ONE-COMPONENT PLASMA;152
12.7.1;1. INTRODUCTION;152
12.7.2;2. SYSTEM AND METHOD;152
12.7.3;3. RESULTS;153
12.7.4;4. DISCUSSION;155
12.7.5;REFERENCES;155
13;Part III: Glass and Freezing Transitions;156
13.1;CHAPTER 14. FREEZING OF COULOMB LIQUIDS;158
13.1.1;1. INTRODUCTION;158
13.1.2;2. FREEZING OF JELLIUM;159
13.1.3;3. BOND PARTICLE MODEL FOR SEMICONDUCTORS;161
13.1.4;4. CONCLUDING REMARKS;165
13.1.5;ACKNOWLEDGEMENT;166
13.1.6;REFERENCES;166
13.2;CHAPTER 15. DENSITY FUNCTIONAL THEORY OF QUANTUM WIGNER CRYSTALLIZATION;168
13.2.1;1. INTRODUCTION;168
13.2.2;2. DWT FOR JELLIUM;168
13.2.3;3. LOCAL FIELD FACTOR AND FREEZING OF JELLIUM;170
13.2.4;4. CONCLUSIONS;171
13.2.5;ACKNOWLEDGMENTS;171
13.2.6;REFERENCES;171
13.3;CHAPTER 16. MOLECULAR DYNAMICS STUDIES OF GLASSY STATES: SUPERCOOLED LIQUIDS AND AMORPHIZED SOLIDS;172
13.3.1;1. INTRODUCTION;172
13.3.2;2. A DYNAMICAL TRANSITION IN METASTABLE FLUIDS;173
13.3.3;3. DEFECT-INDUCED AMORPHIZATION;178
13.3.4;4. DISCUSSION;181
13.3.5;ACKNOWLEDGMENT;182
13.3.6;REFERENCES;182
13.4;CHAPTER 17. STOCHASTIC DYNAMICS OF ATOMS NEAR A GLASS TRANSITION POINT;186
13.4.1;REFERENCES;189
13.5;CHAPTER 18. MOLECULAR-DYNAMICS STUDY OF BINARY ALLOYS: DYNAMICAL CORRELATIONS OF THE SUPERCOOLED LIQUIDS NEAR THE GLASS TRANSITION OF BINARY SOFT-SPHERE MIXTURES;190
13.5.1;1. INTRODUCTION;190
13.5.2;2. MODEL AND MD SIMULATIONS;190
13.5.3;3. RESULTS;191
13.5.4;ACKNOWLEDGMENTS;193
13.5.5;REFERENCES;193
13.6;CHAPTER 19. EFFECT OF THE QUANTUM ELECTRONS TO FORMATION OF A CRYSTALLINE ORDER IN ALKALI METALS;194
13.6.1;1. INTRODUCTION;194
13.6.2;2. THEORY;195
13.6.3;3. NUMERICAL RESULTS;196
13.6.4;REFERENCES;197
14;Part IV: Strong-Coupling Theories and Experiments in Specific Geometries;198
14.1;CHAPTER 20. OBSERVATION OF CORRELATIONS IN FINITE, STRONGLY COUPLED ION PLASMAS;200
14.1.1;1. INTRODUCTION;200
14.1.2;2. CONFINEMENT GEOMETRY;200
14.1.3;3. LASER COOLING AND COMPRESSION;202
14.1.4;4. OBSERVED CORRELATIONS;204
14.1.5;5. ION DIFFUSION;208
14.1.6;ACKNOWLEDGEMENT;209
14.1.7;REFERENCES;209
14.2;CHAPTER 21. THEORY OF STRONGLY-CORRELATED PURE ION PLASMA IN PENNING TRAPS;212
14.2.1;1. INTRODUCTION;212
14.2.2;2. THERMAL EQUILIBRIUM OF STRONGLY-CORRELATED NONNEUTRAL PLASMAS;213
14.2.3;3. NUMERICAL RESULTS;216
14.2.4;4. SLAB MODEL OF THE BOUNDED COULOMB SYSTEM;220
14.2.5;REFERENCES;223
14.3;CHAPTER 22. SURFACE PROPERTIES OF THE COULOMB LIQUIDS: FROM THE CLASSICAL ONE-COMPONENT PLASMA TO LIQUID METALS;224
14.3.1;1. INTRODUCTION;224
14.3.2;2. OCP SURFACE;225
14.3.3;3. LIQUID METAL SURFACES;228
14.3.4;4. CONCLUSION;234
14.3.5;REFERENCES;234
14.4;CHAPTER 23. CLASSICAL CHARGED PARTICLE SYSTEMS WITH INTERFACES;236
14.4.1;1. INTRODUCTION;236
14.4.2;2. SHELL STRUCTURE OF CHARGES UNDER AXIALLY SYMMETRIC CONFINEMENT;237
14.4.3;3. ONE-DIMENSIONAL CONFINEMENT;242
14.4.4;4. THREE-DIMENSIONAL OCP LATTICE AS COLLECTION OF TWO-DIMENSIONAL OCP LATTICES;245
14.4.5;5. CONCLUSION;247
14.4.6;ACKNOWLEDGMENTS;247
14.4.7;REFERENCES;247
14.5;CHAPTER 24. SURFACE CORRELATIONS IN CLASSICAL FINITE COULOMB SYSTEMS;248
14.5.1;1. Introduction;248
14.5.2;2. Statement of the problem;251
14.5.3;3. Debye-Hückel approximation;255
14.5.4;REFERENCES.;258
14.6;CHAPTER 25. PATTERN FORMATION PROCESSES IN BINARY MIXTURES WITH SURFACTANTS;260
14.6.1;1 . INTRODUCTION;260
14.6.2;2. MODEL SYSTEM;260
14.6.3;3. COMPUTER EXPERIMENT;262
14.6.4;4. CONCLUSION;262
14.6.5;ACKNOWLEDGEMENT;263
14.6.6;REFERENCES;263
15;Part V: Charged Particles in Lower Dimensions and/or in Magnetic Fields;264
15.1;CHAPTER 26. EXCITATIONS IN CONDUCTING POLYMERS;266
15.1.1;1. INTRODUCTION;266
15.1.2;2. SOLITON, POLARON, AND MODELS;267
15.1.3;3. PHONONS AROUND THE SOLITON OR THE POLARON;269
15.1.4;4. ELECTRON INTERACTIONS;271
15.1.5;5. PHOTO-INDUCED ABSORPTION;273
15.1.6;6. PHOTO-INDUCED RAMAN SCATTERING;274
15.1.7;7. A RAMAN EXPERIMENT USING MISFET;275
15.1.8;8. CONCLUSIONS;276
15.1.9;ACKNOWLEDGEMENT;276
15.1.10;REFERENCES;277
15.2;CHAPTER 27. DOPING DISORDER AND BAND STRUCTURES IN CONJUGATED POLYMERS;278
15.2.1;1. INTRODUCTION;278
15.2.2;2. COHERENT POTENTIAL APPROXIMATION;279
15.2.3;3. ORDER PARAMETER, IMPURITY BANDS, AND PHASE DIAGRAMS;279
15.2.4;4. CONCLUSIONS;281
15.2.5;REFERENCES;281
15.3;CHAPTER 28. STRONGLY COUPLED ONE-DIMENSIONAL SYSTEM AND THE POLYMER;282
15.3.1;1. INTRODUCTION;282
15.3.2;2. DISPUTE;283
15.3.3;3. CORRELATED BASIS FUNCTIONS (CBF) THEORY;283
15.3.4;4. RESULTS AND CONCLUSIONS;284
15.3.5;ACKNOWLEDGEMENTS;285
15.3.6;REFERENCES;285
15.4;CHAPTER 29. MANY-BODY EFFECTS IN QUANTUM WELLS;286
15.4.1;1. INTRODUCTION;286
15.4.2;2. OPTICAL PROPERTIES;287
15.4.3;3. MAGNETIC OSCILLATION;289
15.4.4;4. SUMMARY AND CONCLUSION;295
15.4.5;REFERENCES;295
15.5;CHAPTER 30. STRONGLY CORRELATED TWO DIMENSIONAL ELECTRONS FORMED ON DIELECTRIC MATERIALS;298
15.5.1;1. INTRODUCTION;298
15.5.2;2. BASIC ELECTRONIC PROPERTIES;299
15.5.3;3. ELECTRON MOBILITY;300
15.5.4;4. EFFECT OF ELECTRON CORRELATION IN THE INTERMEDIATE . REGION;301
15.5.5;5 ELECTRON CRYSTAL;304
15.5.6;6. CONCLUSION;306
15.5.7;REFERENCES;307
15.6;CHAPTER 31. TWO-DIMENSIONAL COULOMB SYSTEMS : SOLVABLE MODELS AT . = 2;308
15.6.1;1. INTRODUCTION;308
15.6.2;2. TWO-COMPONENT PLASMA;309
15.6.3;3. ONE-COMPONENT PLASMA REVISITED;316
15.6.4;4. CONCLUSION;319
15.6.5;REFERENCES;319
15.7;CHAPTER 32. APPROXIMATE THERMODYNAMIC FUNCTIONS FOR THE TWO-DIMENSIONAL TWO-COMPONENT COULOMB GAS;320
15.7.1;1. Introduction;320
15.7.2;2. Numerical computation of the configuration integral;321
15.7.3;3. Approximate thermodynamic functions;322
15.7.4;4. Derivatives of the configuration integral for 7 = 0 and 7 = 2.;322
15.7.5;5. Perspectives.;323
15.7.6;REFERENCES.;323
15.8;CHAPTER 33. STRONGLY COUPLED 2D OCP IN A MAGNETIC FIELD;324
15.8.1;1. ELECTROSTATIC ANALOGUE;324
15.8.2;2. COULOMB EFFECTS IN MAGNETIC FIELD;326
15.8.3;3. DYNAMICAL CONDUCTIVITY;328
15.8.4;4. FRACTIONAL QUANTIZED HALL EFFECT;329
15.8.5;5. CONCLUDING REMARKS;334
15.8.6;REFERENCES;335
15.9;CHAPTER 34. COLLISIONAL RELAXATION OF A STRONGLY MAGNETIZED PURE ELECTRON PLASMA (THEORY AND EXPERIMENT);336
15.9.1;1. INTRODUCTION;336
15.9.2;2. BINARY INTERACTION;337
15.9.3;3. CALCULATION OF THE EQUIPARTITION RATE;339
15.9.4;4. MOLECULAR DYNAMICS SIMULATION;343
15.9.5;V. EXPERIMENT;345
15.9.6;REFERENCES;347
15.10;CHAPTER 35. LONGTIME TAILS OF TIME CORRELATION FUNCTIONS FOR AN IONIC MIXTURE IN A MAGNETIC FIELD AND THE VALIDITY OF MAGNETOHYDRODYNAMICS;348
15.10.1;1. INTRODUCTION;348
15.10.2;2. MODE SPECTRUM OF AN IONIC MIXTURE;348
15.10.3;3. LONG-TIME TAILS OF TIME CORRELATION FUNCTIONS;350
15.10.4;REFERENCES;351
16;Part VI: Quantum Electron Liquids in Strong Coupling;352
16.1;CHAPTER 36. DENSITY FUNCTIONAL THEORY OF SUPERCONDUCTORS REGARDED AS TWO-COMPONENT PLASMAS;354
16.1.1;1. BASIC DENSITY FUNCTIONAL THEORY;354
16.1.2;2. GENERALIZATIONS;355
16.1.3;3. SUPERCONDUCTORS;356
16.1.4;REFERENCES;358
16.2;CHAPTER 37. GREEN'S FUNCTION AND DYNAMIC CORRELATIONS OF ELECTRONS IN METALS;360
16.2.1;1. FUNCTIONAL DERIVATIVES;360
16.2.2;2. CONVOLUTION APPROXIMATION AND DYNAMIC HYPERNETTED-CHAIN SCHEME;361
16.2.3;3. SUM RULES AND ASYMPTOTIC BEHAVIOR FOR THE DIELECTRIC FUNCTION AND VERTEX CORRECTION;363
16.3;CHAPTER 38. VARIATIONAL THEORY OF ELECTRON LIQUID;364
16.3.1;1. INTRODUCTION;364
16.3.2;2. EPX METHOD;367
16.3.3;3. NUMERICAL RESULTS;369
16.3.4;4. FUTURE PROSPECTS;373
16.3.5;ACKNOWLEDGEMENTS;374
16.3.6;REFERENCES;374
16.4;CHAPTER 39. LANDAU INTERACTION FUNCTION AND EFFECTIVE MASS OF AN ELECTRON LIQUID;376
16.4.1;REFERENCES;379
16.5;CHAPTER 40. RPA, VERTEX CORRECTION AND SUPERCONDUCTIVITY IN TWO-DIMENSIONAL MODELS;380
16.5.1;1. INTRODUCTION;380
16.5.2;2. SELF-CONSISTENCY EQUATIONS;380
16.5.3;3. VERTEX CORRECTION IN THE HUBBARD MODEL;382
16.5.4;4. SUPERCONDUCTIVITY IN THE CuO2 PLANE;382
16.5.5;REFERENCES;383
16.6;CHAPTER 41. ABSENCE OF EXPONENTIAL SCREENING IN QUANTUM MECHANICAL PLASMAS;384
16.6.1;1. INTRODUCTION;384
16.6.2;2. SEMI-CLASSICAL EXPANSIONS;385
16.6.3;3. THE HYDROGEN ATOM IN A CLASSICAL PLASMA;386
16.6.4;REFERENCES;388
17;Part VII: Metallic Systems;390
17.1;CHAPTER 42. NATURE OF PHONONS, ISOTOPE EFFECT, AND SUPERCONDUCTIVITY IN Ba1-xKxBiO3;392
17.1.1;1. INTRODUCTION;392
17.1.2;2. MOLECULAR DYNAMICS SIMULATION;394
17.1.3;3. PHONON DENSITY OF STATES;396
17.1.4;4. ELECTRON TUNNELING;400
17.1.5;5. ISOTOPE EFFECT DUE TO 16O TO 18O SUBSTITUTION;401
17.1.6;6. CONCLUSIONS;402
17.1.7;REFERENCES;403
17.2;CHAPTER 43. MICROSCOPIC DERIVATION OF LANDAU-GINZBURG FREE ENERGY FOR AN IONELECTRON TWO-COMPONENT PLASMA;404
17.2.1;1. INTRODUCTION;404
17.2.2;2. GENERAL FORMULATION;405
17.2.3;3. ADIABATIC APPROXIMATION;406
17.2.4;4. DISCUSSIONS;407
17.2.5;REFERENCES;407
17.3;CHAPTER 44. THERMODYNAMIC PROPERTIES OF A LIQUID METAL USING A SOFT-SPHERE REFERENCE SYSTEM;408
17.3.1;1. INTRODUCTION;408
17.3.2;2. THE GB METHOD AND SOFT-SPHERE REFERENCE FLUIDS;408
17.3.3;3. RESULTS FOR Na AND Al;409
17.3.4;4. CONCLUSIONS;411
17.3.5;REFERENCES;411
17.4;CHAPTER 45. ELECTRON-ION STRONG COUPLING EFFECTS IN DENSE HYDROGEN PLASMAS I. EQUATION OF STATE AND ELECTRIC CONDUCTIVITY;412
17.4.1;REFERENCES;415
17.5;CHAPTER 46. DENSITY FUNCTIONAL APPROACH TO PARTICLE CORRELATIONS AND ELECTRONIC STRUCTURE IN DENSE PLASMAS;416
17.5.1;1. INTRODUCTION;416
17.5.2;2. THE DENSITY FUNCTIONAL MODEL;416
17.5.3;3. THE PSEUDOPOTENTIALS;421
17.5.4;4. SIMPLIFIED DENSITY FUNCTIONAL MODELS;422
17.5.5;5. CORRELATIONS IN IMPURITY PLASMAS;422
17.5.6;6. TREATMENT OF ION-CONFIGURATION EFFECTS;425
17.5.7;7. ACKNOWLEDGEMENTS;426
17.5.8;REFERENCES;426
17.6;CHAPTER 47. EFFECT OF THE ELECTRON-ION CORRELATION POTENTIALS ON THERMODYNAMIC FUNCTIONS IN DENSE H AND He PLASMAS;428
17.6.1;1. INTRODUCTION;428
17.6.2;2. THE e-i CORRELATION IN DFT;428
17.6.3;3. NUMERICAL RESULTS AND DISCUSSION;429
17.6.4;4. CONCLUDING REMARK;431
17.6.5;REFERENCES;431
17.7;CHAPTER 48. ENERGY LOSS OF CHARGED PARTICLES IN LIQUID AND AMORPHOUS METALS;432
17.7.1;1. INTRODUCTION;432
17.7.2;2. FORMULATION;432
17.7.3;3. DYNAMICAL EFFECTS IN ENERGY LOSS FOR LOW ENERGY PROJECTILES;433
17.7.4;4. ENERGY LOSS IN LIQUID AND AMORPHOUS METALS;434
17.7.5;5. CONCLUDING REMARKS;435
17.7.6;REFERENCES;435
17.8;CHAPTER 49. STUDIES OF A STRONGLY COUPLED PLASMA PRODUCED IN A CAPILLARY DISCHARGE;436
17.8.1;REFERENCES;439
17.9;CHAPTER 50. THE MEASUREMENT OF TRANSPORT PROPERTIES IN STRONGLY COUPLED PLASMAS;440
17.9.1;1. INTRODUCTION;440
17.9.2;2. RESISTIVITY EXPERIMENT;441
17.9.3;3. OTHER TRANSPORT PROPERTY MEASUREMENT;443
17.9.4;4. CONCLUSIONS;444
17.9.5;REFERENCES;444
17.10;CHAPTER 51. ELECTRICAL RESISTIVITY OF STRONGLY COUPLED PLASMAS IN INTENSE FIELDS;446
17.10.1;1. INTRODUCTION;446
17.10.2;2. GENERAL THEORY;446
17.10.3;RESULTS;448
17.10.4;REFERENCES;449
17.11;CHAPTER 52. GENERATION OF A STRONGLY COUPLED PLASMA WITH ELECTRON TEMPERATURE AROUND 4.2 K IN CRYOGENIC HELIUM GASES;452
17.11.1;1. INTRODUCTION;452
17.11.2;2. EXPERIMENTAL SETUP AND PROCEDURE;453
17.11.3;3. EXPERIMENTAL RESULTS AND DISCUSSION;453
17.11.4;ACKNOWLEDGEMENTS;455
17.11.5;REFERENCES;455
17.12;CHAPTER 53. MEASUREMENT OF THE DYNAMIC FORM FACTOR AT LOW FREQUENCIES FOR A PLASMA WITH . = .06;456
17.12.1;REFERENCES;459
18;Part VIII: Metal-Insulator Transition;460
18.1;CHAPTER 54. THERMODYNAMIC AND STRUCTURAL PROPERTIES OF FLUID METALS IN THE METAL-INSULATOR TRANSITION RANGE;462
18.1.1;1. INTRODUCTION;462
18.1.2;2. EXPANDED ALKALI METALS;463
18.1.3;3. EXPANDED DIVALENT MERCURY;469
18.1.4;4. PHASE EQUILIBRIA IN HG-HE MIXTURES;472
18.1.5;REFERENCES;473
18.2;CHAPTER 55. THEORETICAL STUDY OF ATOMIC AND ELECTRONIC STRUCTURES IN MICROCLUSTERS OF POTASSIUM AND MERCURY;474
18.2.1;§1. INTRODUCTION;474
18.2.2;§2. INFORMATION FROM EXPERIMENTS;475
18.2.3;§3. METHOD;476
18.2.4;§4. RESULTS FOR POTASSIUM AND MERCURY;478
18.2.5;§5. DISCUSSION;484
18.2.6;References;485
18.3;CHAPTER 56. IONIZATION EFFECTS IN A MODEL FLUID;486
18.3.1;1. INTRODUCTION;486
18.3.2;2. MODEL;486
18.3.3;3. RESULTS;488
18.3.4;4. SUMMARY;489
18.3.5;REFERENCES;489
18.4;CHAPTER 57. THE INSULATOR-METAL TRANSITION IN DENSE PLASMAS;490
18.4.1;1. INTRODUCTION;490
18.4.2;2. THE INSULATOR-METAL TRANSITION AT LOW TEMPERATURE;491
18.4.3;3. THE INSULATOR-METAL TRANSITION AT HIGHER TEMPERATURES - THE PLASMA PHASE TRANSITION (PPT);495
18.4.4;4. CONCLUSIONS;499
18.4.5;REFERENCES;500
18.5;CHAPTER 58. PRESSURE IONIZATION IN FLUID HYDROGEN;502
18.5.1;I. INTRODUCTION;502
18.5.2;II. DESCRIPTION OF THE MODEL FREE ENERGY;503
18.5.3;III. RESULTS AND DISCUSSION;506
18.5.4;IV. EFFECT OF THE PPT ON THE THERMAL STRUCTURE OF LOW-MASS BROWN DWARFS;510
18.5.5;V. CONCLUSION;511
18.5.6;ACKNOWLEDGEMENTS;511
18.5.7;REFERENCES;511
18.6;CHAPTER 59. THERMODYNAMICS AND TRANSPORT IN DENSE PARTIALLY IONIZED PLASMAS;514
18.6.1;1. INTRODUCTION;514
18.6.2;2. MANY PARTICLE EFFECTS. GREEN FUNCTION TECHNIQUE;515
18.6.3;3. THERMODYNAMIC EQUILIBRIUM;520
18.6.4;4. KINETIC EQUATIONS FOR NONIDEAL REACTING PLASMAS;520
18.6.5;5. NONIDEALITY AND NONLINEAR IONIZATION KINETICS IN PLASMAS;522
18.6.6;6. ELECTRICAL CONDUCTIVITY OF A NONIDEAL PLASMA;523
18.6.7;REFERENCES;524
19;Part IX: Atomic and Molecular States and Radiation;526
19.1;CHAPTER 60. GENERALIZED SCHRODINGER EQUATIONS FOR SHIFTS, WIDTHS, AND WAVE FUNCTIONS OF ATOMIC AND MOLECULAR STATES IN DENSE MATTER;528
19.1.1;1. SCF METHOD;528
19.1.2;2. MICROFIELD METHODS;530
19.1.3;3. BETHE-SALPETER EQUATION;530
19.1.4;4. DISCRETE ATOMIC EIGENFUNCTIONS OF THE REDUCED DENSITY MATRIX;530
19.1.5;5. VARIATIONAL METHOD FOR SHIFTS, WIDTHS, AND WAVE FUNCTIONS;531
19.1.6;REFERENCES;538
19.2;CHAPTER 61. DYNAMICS OF ELECTRIC FIELDS IN STRONGLY COUPLED PLASMAS;540
19.2.1;1. INTRODUCTION;540
19.2.2;2. DEFINITIONS AND GENERAL PROPERTIES;540
19.2.3;3. GAUSSIAN LIMIT;542
19.2.4;4. SHORT TIME LIMIT;543
19.2.5;5. HIGH FIELD LIMIT;545
19.2.6;6. INDEPENDENT PARTICLE MODEL;547
19.2.7;7. DISCUSSION;548
19.2.8;ACKNOWLEDGEMENTS;550
19.2.9;REFERENCES;550
19.3;CHAPTER 62. ELECTRON-ION STRONG COUPLING EFFECTS IN DENSE HYDROGEN PLASMAS II. ELECTRIC LEVELS OF IMPURITY IONS;552
19.3.1;1. INTRODUCTION;552
19.3.2;2. MODELS;552
19.3.3;3. RESULTS;553
19.3.4;REFERENCES;554
19.4;CHAPTER 63. EQUATION OF STATE AND OPACITY OF DENSE PLASMAS;556
19.4.1;1. INTRODUCTION;556
19.4.2;2. EQUATION OF STATE;557
19.4.3;3. ATOMIC PHYSICS;561
19.4.4;4. OPACITY;562
19.4.5;5. OPACITY CALCULATIONS;566
19.4.6;REFERENCES;566
19.5;CHAPTER 64. SOME INTERPRETATION OF EXPERIMENTAL VALUES OF DC ELECTRICAL CONDUCTIVITY AND SPECTRAL LINE SHAPE;568
19.5.1;1. INTRODUCTION;568
19.5.2;2. PRODUCTION AND DIAGNOSTICS OF HIGH DENSITY PLASMAS;569
19.5.3;3. DC ELECTRICAL CONDUCTIVITY;572
19.5.4;4. PROFILE OF THE SPECTRAL LINES;573
19.5.5;5. CONCLUDING REMARKS;574
19.5.6;ACKNOWLEDGEMENT;575
19.5.7;REFERENCES;575
19.6;CHAPTER 65. EXPERIMENTAL STUDY OF OPTICAL PROPERTIES OF STRONGLY COUPLED PLASMAS;578
19.6.1;1. INTRODUCTION;578
19.6.2;2. PLASMA GENERATION;578
19.6.3;3. TEMPERATURE MEASUREMENT TECHNIQUES;580
19.6.4;4. STARK SHIFT OF ArI LINES;580
19.6.5;5. INVESTIGATION OF THE BALMER SERIES LINES;582
19.6.6;6. Ar AND Xe DENSE PLASMAS IN THE REGION OF LARGE ..;585
19.6.7;ACNOWLEGEMENT;587
19.6.8;REFERENCES;587
19.7;CHAPTER 66. MANY-ELECTRON EFFECTS ON DYNAMIC PROCESSES IN DENSE MATTER;590
19.7.1;1. INTRODUCTION;590
19.7.2;2. SELF-CONSISTENT FIELD MOLECULAR DYNAMICS;590
19.7.3;3. DYNAMIC SCREENING;591
19.7.4;4. SUMMARY;593
19.7.5;ACKNOWLEDGEMENT;593
19.7.6;REFERENCES;593
20;Part X: Shock-Compressed Plasmas and Inertial-Confînement-Fusion Plasmas;594
20.1;CHAPTER 67. LASER PRODUCED OPTICALLY-THIN STRONGLY COUPLED PLASMAS;596
20.1.1;Introduction;596
20.1.2;Plasma Production;597
20.1.3;Plasma Characteristics;599
20.1.4;Plasma Opacity;604
20.1.5;Conclusion;606
20.1.6;References;607
20.2;CHAPTER 68. ION BEAM-PLASMA INTERACTION: A STANDARD MODEL APPROACH;608
20.2.1;1. INTRODUCTION;608
20.2.2;2. STOPPING STANDARD MODEL (SSM);609
20.2.3;3. BEYOND THE S.S.M.;612
20.2.4;4. BEAM-PLASMA EXPERIMENTS;613
20.2.5;5. MEASURED ENERGY LOSS;615
20.2.6;6. FUTURE PROSPECTS;618
20.2.7;REFERENCES;618
20.3;CHAPTER 69. PARTICLE SIMULATIONS ON STATIC AND DYNAMIC PROPERTIES OF TWO COMPONENT HOT DENSE PLASMAS;620
20.3.1;1. Introduction;620
20.3.2;2. Reduction in bremsstrahlung emission from binary ionic mixture plasma;621
20.3.3;3. Contact potential and Surface Tension;622
20.3.4;4. Interaction between High Intensity, Ultra Short Laser and Hydrogen Plasma at a Solid Density;623
20.3.5;REFERENCES;623
20.4;CHAPTER 70. OPTICAL OBSERVATION OF LASER-COMPRESSED MATERIAL;624
20.4.1;1. INTRODUCTION;624
20.4.2;2. EXPERIMENTS;624
20.4.3;3. EXPERIMENTAL RESULTS AND ANALYSIS;625
20.4.4;4. DISCUSSION;627
20.4.5;5. CONCLUSION;627
20.4.6;REFERENCE;627
20.5;CHAPTER 71. MECHANISM OF FUEL COMPRESSION IN ICF AND PROPERTY OF COMPPRESSED FUEL PLASMA;628
20.5.1;1. INTRODUCTION;628
20.5.2;2. FUEL COMPRESSION;628
20.5.3;REFERENCES;631
20.6;CHAPTER 72. CHARGE NEUTRALIZATION DURING PROPAGATION OF INTENSE LIGHT ION BEAM FOR ICF DRIVER;632
20.6.1;1. INTRODUCTION;632
20.6.2;2. FUNDAMENTAL EQUATIONS;632
20.6.3;3. STEADY SOLUTION OF BEAM;632
20.6.4;4. SOLUTION OF BEAM WITH TWO EDGES;633
20.6.5;5. MOTION OF ELECTRON IN BACKGROUND PLASMA;634
20.6.6;6. DETAILED ANALYSIS OF ELECTRON MOTION;634
20.6.7;REFERENCES;635
21;Part XI: Dense Multi-Ionic Systems;636
21.1;CHAPTER 73. DYNAMICS AND MECHANISM OF DIFFUSION IN SUPERIONIC CONDUCTORS;638
21.1.1;1. INTRODUCTION;638
21.1.2;2. MODEL;638
21.1.3;3. RESULTS;639
21.1.4;4. CONCLUDING REMARKS;641
21.1.5;REFERENCES;641
21.2;CHAPTER 74. PROPERTIES OF STRONGLY COUPLED MULTI-IONIC PLASMAS;642
21.2.1;1. INTRODUCTION;642
21.2.2;2. N DEPENDENCE IN MC SIMULATIONS OF THE OCP;643
21.2.3;3. OCP FLUID AND SOLID;645
21.2.4;4. BINARY IONIC MIXTURES;651
21.2.5;ACKNOWLEDGEMENTS;653
21.2.6;REFERENCES;654
21.3;CHAPTER 75. LINEAR AND ELECTRONIC TRANSPORT IN STRONGLY COUPLED BINARY IONIC MIXTURES;656
21.3.1;REFERENCES;659
21.4;CHAPTER 76. STATISTICAL-MECHANICAL EFFECTS ON COLD NUCLEAR FUSION IN METAL HYDRIDES;660
21.4.1;REFERENCES;663
22;Part XII: Strong-Coupling Theories and Experiments in General;664
22.1;CHAPTER 77. CRITICAL COMPRESSIBILITY FACTOR OF LATTICE GAS;666
22.1.1;1. INTRODUCTION;666
22.1.2;2. LATTICE GAS AND THE ISING MODEL;666
22.1.3;3. EXACT ZC FOR TWO-DIMENSIONAL SYSTEM;667
22.1.4;4. APPLICATION OF HIGH TEMPERATURE EXPANSION;667
22.1.5;REFERENCES;669
22.2;CHAPTER 78. STRUCTURAL PHASE TRANSITIONS IN DENSE HYDROGEN;670
22.2.1;1. INTRODUCTION;670
22.2.2;2. TOTAL ENERGY CALCULATION USING PLANE-WAVE BASIS FUNCTION;671
22.2.3;3. PHASE TRANSITIONS IN THE METALLIC AND MOLECULAR PHASE;674
22.2.4;4. BOND LENGTH AND VIBRON FREQUENCY WITH ENERGY CORRECTION;677
22.2.5;5. CONCLUDING REMARKS;679
22.2.6;ACKNOWLEDGEMENT;679
22.2.7;REFERENCES;680
22.3;CHAPTER 79. PLASMA CONTRIBUTIONS TO THE COHESIVE ENERGY OF CHARGE STABILISED COLLOIDAL SYSTEMS;682
22.3.1;ACKNOWLEDGEMENT;685
22.3.2;REFERENCES;685
22.4;CHAPTER 80. A TWO-DIMENSIONAL POLYMER CHAIN WITH SHORT-RANGE INTERACTIONS;686
22.4.1;1. INTRODUCTION;686
22.4.2;2. MODEL;686
22.4.3;3. RESULTS;687
22.4.4;4. DISCUSSIONS AND CONCLUSIONS;689
22.4.5;ACKNOWLEDGMENTS;689
22.4.6;REFERENCES;689
22.5;CHAPTER 81. NEW EMPIRICAL BRIDGE FUNCTIONS OF INTEGRAL EQUATION: APPLICATION TO THE BINARY SUPERCOOLED LIQUIDS OF THE TWELFTH INVERSE POWER POTENTIAL;690
22.5.1;1. INTRODUCTION;690
22.5.2;2. The MHNCS approximation;691
22.5.3;3. MHNCS RESULTS FOR THE BINARY SOFT-SPHERE MIXTURES;692
22.5.4;ACKNOWLEDGEMENTS;693
22.5.5;REFERENCES;693
22.6;CHAPTER 82. EXTENDED MEAN DENSITY APPROXIMATION FOR STRUCTURE FACTORS OF FLUIDS;694
22.6.1;1. INTRODUCTION;694
22.6.2;2. REVIEW OF THE FORMALISM;694
22.6.3;3. RESULTS AND DISCUSSIONS;696
22.6.4;REFERENCES;697
22.7;CHAPTER 83. INTEGRAL EQUATION APPROACH FOR CHARGED COLLOIDAL DISPERSIONS;698
22.7.1;1. INTRODUCTION;698
22.7.2;2. METHOD;698
22.7.3;3. RESULTS;699
22.7.4;REFERENCES;700
22.8;CHAPTER 84. DENSITY FUNCTIONAL THEORY AND LANGEVIN-DIFFUSION EQUATION;702
22.8.1;1. INR0DUCTI0N;702
22.8.2;2. LANGEVIN-DIFFUSION EQUATION;702
22.8.3;3. LIQUID-CRYSTAL INTERFACE;704
23;AUTHOR INDEX;706
24;SUBJECT INDEX;708



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.