E-Book, Englisch, 284 Seiten, E-Book
Sensor-Line Cameras and Laser Range-Finders
E-Book, Englisch, 284 Seiten, E-Book
Reihe: Wiley-IS&T Series in Imaging Science and Technology
ISBN: 978-0-470-99827-4
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
This book describes two modern technologies for capturinghigh-accuracy panoramic images and range data, namely the use ofsensor-line cameras and laser range-finders. It providesmathematically accurate descriptions of the geometry of thesesensing technologies and the necessary information required toapply them to 3D scene visualization or 3D representation. The bookis divided into three parts:
* Part One contains a full introduction to panoramic cameras andlaser range-finders, including a discussion of calibration to aidpreparation of equipment ready for use.
* Part Two explains the concept of stereo panoramic imaging,looking at epipolar geometry, spatial sampling, image qualitycontrol and camera analysis and design.
* Part Three looks at surface modelling and rendering based onpanoramic input data, starting with the basics and taking thereader through to more advanced techniques such as the optimizationof surface meshes and data fusion.
* There is also an accompanying website containinghigh-resolution visual samples and animations, illustratingtechniques discussed in the text.
Panoramic Imaging is primarily aimed at researchers andstudents in engineering or computer science involved in usingimaging technologies for 3D visualization or 3D scenereconstruction. It is also of significant use as an advanced manualto practising engineers in panoramic imaging. In brief, the book isof value to all those interested in current developments inmultimedia imaging technology
Autoren/Hrsg.
Weitere Infos & Material
Preface.
Series Preface.
Website and Exercises.
List of Symbols.
1. Introduction.
1.1 Panoramas
1.2 Panoramic Paintings
1.3 Panoramic or Wide-Angle Photographs
1.4 Digital Panoramas
1.5 Striving for Accuracy
1.6 Exercises
1.7 Further Reading
2. Cameras and Sensors.
2.1 Camera Models
2.2 Optics
2.3 Sensor Models
2.4 Examples and Challenges
2.5 Exercises
2.6 Further Reading
3. Spatial Alignments.
3.1 Mathematical Fundamentals
3.2 Central Projection:World into Image Plane
3.3 Classification of Panoramas
3.4 Coordinate Systems for Panoramas
3.5 General Projection Formula for Cylindrical Panorama
3.6 Rotating Cameras
3.7 Mappings between Different Image Surfaces
3.8 Laser Range-Finder
3.9 Exercises
3.10 Further Reading
4. Epipolar Geometry.
4.1 General Epipolar Curve Equation
4.2 Constrained Poses of Cameras
4.3 Exercises
4.4 Further Reading
5. Sensor Calibration.
5.1 Basics
5.2 Preprocesses for a Rotating Sensor-Line Camera
5.3 A Least-Square Error Optimization Calibration Procedure
5.4 Geometric Dependencies of R and w
5.5 Error Components in LRF Data
5.6 Exercises
5.7 Further Reading
6. Spatial Sampling.
6.1 Stereo Panoramas
6.2 Sampling Structure
6.3 Spatial Resolution
6.4 Distances between Spatial Samples
6.5 Exercises
6.6 Further Reading
7. Image Quality Control.
7.1 Two Requirements
7.2 Terminology
7.3 Parameter Optimization
7.4 Error Analysis
7.5 Exercises
7.6 Further Reading
8. Sensor Analysis and Design.
8.1 Introduction
8.2 Scene Composition Analysis
8.3 Stereoacuity Analysis
8.4 Specification of Camera Parameters
8.5 Exercises
8.6 Further Reading
9. 3D Meshing and Visualization.
9.1 3D Graphics
9.2 Surface Modeling
9.3 More Techniques for Dealing with Digital Surfaces
9.4 Exercises
9.5 Further Reading
10. Data Fusion.
10.1 Determination of Camera Image Coordinates
10.2 Texture Mapping
10.3 High Resolution Orthophotos
10.4 Fusion of Panoramic Images and Airborne Data
10.5 Exercises
10.6 Further Reading
References.
Index.