E-Book, Englisch, 474 Seiten
Hosono / Mishima / Takezoe Nanomaterials
1. Auflage 2006
ISBN: 978-0-08-046390-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Research Towards Applications
E-Book, Englisch, 474 Seiten
ISBN: 978-0-08-046390-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A research project at the Tokyo Institute of Technology - dedicated to fostering innovation in the field of nanomaterials - was selected as one of the 21st Century COE (Center of Excellence) programs. The achievements of this COE program, which builds on the strong tradition of materials science in the Institute, are summarized within this book.
Nanomaterials - Research Towards Applications
is divided into four main parts:
(1) Revolutionary Oxides
(2) State-of-the-Art Polymers
(3) Nanostructure Design for New Functions, and
(4) Nanostructure Architecture for Engineering Applications.
* Each section consists of three or four chapters related to inorganic, organic and metallic nanomaterials
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Contents;7
3;Preface;12
4;Materials Research at the Tokyo Institute of Technology;13
5;List of Contributors;16
6;Part I - Revolutional Oxides;19
6.1;Chapter 1 - Function Cultivation in Transparent Oxides Utilizing Natural and Artificial Nanostructures;21
6.1.1;1.1 General Introduction;22
6.1.2;1.2 Transparent Oxide Semiconductors;25
6.1.3;1.3 Transparent Nanoporous Crystal 12CaO-7Al2O3;42
6.1.4;1.4 Encoding of Periodic Nanostructures with Interfering Femtosecond Pulses;58
6.1.5;Acknowledgments;73
6.1.6;References;75
6.2;Chapter 2 - The Role of Lattice Defects in Oxides;80
6.2.1;2.1 Introduction;80
6.2.2;2.2 Magnetic Materials (Spin Crossover in Oxides);81
6.2.3;2.3 Ferroelectric Materials;90
6.2.4;2.4 Lithium Ion Conductivity in Oxides;97
6.2.5;2.5 Concluding Remarks;109
6.2.6;2.6 Clue to the Design of New Functional Oxide Materials;111
6.2.7;References;113
6.3;Chapter 3 - Size Effect of Ferroelectric and High Permittivity Thin Films;117
6.3.1;3.1 Introduction;117
6.3.2;3.2 Size Effect of Ferroelectricity in PZT Thin Films;119
6.3.3;3.3 Size-Effect-Free Characteristics of Bismuth Layer Structured Dielectrics;125
6.3.4;3.4 Summary and Future Aspects;149
6.3.5;Acknowledgment;149
6.3.6;References;149
7;Part II - State-of-the-Art Polymers;153
7.1;Chapter 4 - Photonic Devices using Liquid Crystal Nanostructures;155
7.1.1;4.1 Photonic Effect;155
7.1.2;4.2 Lasing from CLCs;166
7.1.3;4.3 Optical Diode;178
7.1.4;4.4 Concluding Remarks and Future Problems for Practical Applications;185
7.1.5;Acknowledgments;185
7.1.6;References;186
7.2;Chapter 5 - Nanocylinder Array Structures in Block Copolymer Thin Films;189
7.2.1;5.1 General Introduction;189
7.2.2;5.2 Synthesis of Block Copolymers;190
7.2.3;5.3 Self-organization and Phase Behavior of Block Copolymer Microdomains;191
7.2.4;5.4 Phase-segregated Nanostructures in Block Copolymer Thin Films;209
7.2.5;5.5 Phase-segregated Nanostructures in Thin Films Effective for Practical Use Cylindrical Phases in Block Copolymer Thin Films;212
7.2.6;5.6 Nanocylindrical-structured Block Copolymer Templates;228
7.2.7;5.7 Summary and Future Directions;233
7.2.8;Acknowledgment;234
7.2.9;References;234
7.3;Chapter 6 - Nano-Size Charge Inhomogeneity in Organic Metals;242
7.3.1;6.1 Introduction;242
7.3.2;6.2 Universal Phase Diagram of the Phase;244
7.3.3;6.3 Charge Order;249
7.3.4;6.4 Theoretical Background and Estimation of V;258
7.3.5;6.5 Discussion;273
7.3.6;6.6 Summary;275
7.3.7;Acknowledgments;276
7.3.8;References;276
8;Part III - Nanostructure Design for New Functions;281
8.1;Chapter 7 - Size Control of Nanostructures by Quantum Confinement;283
8.1.1;7.1 Introductory Remarks;283
8.1.2;7.2 Quantum Well States in Surface Nanostructures;285
8.1.3;7.3 Size Control of Nanostructures via Quantum Confinement;296
8.1.4;7.4 Practical and Future Applications;309
8.1.5;7.5 Summary;313
8.1.6;References;313
8.2;Chapter 8 - Grain Boundary Dynamics in Ceramics Superplasticity;315
8.2.1;8.1 Introduction;315
8.2.2;8.2 Motion and Topological Evolution of Grains;316
8.2.3;8.3 Physical Characteristics of Ceramics Superplasticity;322
8.2.4;8.4 Grain Refinement and Suppression of Grain Growth;323
8.2.5;8.5 Diffusion Enhancement;324
8.2.6;8.6 Superplastic Forming;327
8.2.7;8.7 Future Prospects;328
8.2.8;References;328
8.3;Chapter 9 -Nanostructure Control for High-Strength and High-Ductility Aluminum Alloys;333
8.3.1;9.1 Introduction;333
8.3.2;9.2 History of High-Strength and High-Ductility Aluminum Alloys;334
8.3.3;9.3 Discovery of GP Zones;337
8.3.4;9.4 Clusters in the Early Stage of Phase Decomposition;338
8.3.5;9.5 Ductility and PFZ Control by Nanoclusters;360
8.3.6;9.6 Summary;362
8.3.7;Acknowledgments;362
8.3.8;References;362
9;Part IV - Nanostructure Architecture for Engineering Applications;365
9.1;Chapter 10 - Nanoporous Materials from Mineral and Organic Templates;367
9.1.1;10.1 Historical Background and Development;367
9.1.2;10.2 Review of the Porous Properties of Nanoporous Materials Produced Using Mineral Templates;375
9.1.3;10.3 Practical/ Future Applications Related to Various Properties;391
9.1.4;10.4 Summary;396
9.1.5;References;397
9.2;Chapter 11 - Enhancement of Thermoelectric Figure of Merit through Nanostructural Control on Intermetallic Semiconductors toward High-Temperature Applications;401
9.2.1;11.1 Background and Principles;402
9.2.2;11.2 Bulk Intermetallic Semiconductors for Future High-Temperature Applications;408
9.2.3;11.3 A Breakthrough in ZT: Nanostructured Materials;423
9.2.4;References;432
9.3;Chapter 12 - Smart Coatings - Multilayered and Multifunctional in-situ Ultrahigh-temperature Coatings;437
9.3.1;12.1 Introduction;438
9.3.2;12.2 Oxidation Resistance of Ir;439
9.3.3;12.3 Design of Multifunctional and Multilayered Coating Based on IrAl;441
9.3.4;12.4 Physical Properties of IrAl Alloys;443
9.3.5;12.5 Oxidation Behavior of Ir-rich IrAl;451
9.3.6;12.6 Oxidation Behavior of Al-rich IrAl Alloys;455
9.3.7;12.7 Oxidation Behavior of Co-added IrAl;458
9.3.8;12.8 Summary;462
9.3.9;References;463
10;Index;465