Volume 10: Catalysis
E-Book, Englisch, 253 Seiten, PDF
ISBN: 978-3-13-179261-7
Verlag: Thieme
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Wissenschaftler
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface to the Series Synthetic Methods of Organometallic and Inorganic Chemistry
;5
2;Preface to Volume 10;7
3;Contents;8
4;Chapter 1: Amido Ligands in Coordination
Chemistry;15
4.1;1.1 Introduction;16
4.2;1.2 Amidinates;17
4.2.1;1.2.1 Ligands;17
4.2.2;1.2.2 Group 3 Metal and Lanthanide Complexes;18
4.2.3;1.2.3 Titanium and Zirconium Complexes;22
4.2.4;1.2.4 Complexes of the Vanadium Triad;26
4.2.5;1.2.5 Group 6 Metal and Later Transition Metal Complexes;28
4.3;1.3 Aminopyridinates;37
4.3.1;1.3.1 Ligands;37
4.3.2;1.3.2 Group 3 Metal and Lanthanide Complexes;39
4.3.3;1.3.3 Titanium and Zirconium Complexes;42
4.3.4;1.3.4 Complexes of the Vanadium Triad;48
4.3.5;1.3.5 Late Transition Metal Complexes;52
4.3.6;1.3.6 Heterobimetallics;54
5;Chapter 2: Hydroformylation and Hydroxycarbonylationof Alkenes; Formation of
C-N and C-C Bonds;56
5.1;2.1 Introduction;57
5.1.1;2.1.1 Synthesis of Tris(2-tern-butyl-4-methylphenyl) Phosphite
;57
5.1.2;2.1.2 The Hydroformylation Process;57
5.2;2.2 Asymmetric Hydroformylation of Styrene;59
5.2.1;2.2.1 Synthesis of Chiral Diphosphite 4 and its Complex HRh(4)(CO)2
;59
5.2.2;2.2.2 Asymmetric Hydroformylation;62
5.3;2.3 Palladium-Catalyzed Biphasic Hydroxycarbonylation of Alkenes;64
5.3.1;2.3.1 Preparation of Catalysts;64
5.3.2;2.3.2 Hydroxycarbonylation of Alkenes;65
5.4;2.4 Rhodium-Catalyzed Hydroformylation of Internal Olefins to Linear Aldehydes;67
5.4.1;2.4.1 Synthesis of Phosphine Ligands;68
5.4.2;2.4.2 Hydroformylation of Internal Alkenes;71
5.5;2.5 Application of (PP)Pd(Ar)(X) Catalysts in the Amination of Aryl
Bromides;72
5.5.1;2.5.1 Preparation of Catalysts;73
5.5.2;2.5.2 Palladium-Catalyzed Coupling of 2-Methoxyaniline (o-Anisidine) with Bromobenzene;74
5.6;2.6 Fast Heck Reaction using Bulky Monodentate Phosphorus Ligands;75
5.6.1;2.6.1 Synthesis of [(Phosphorus Amidite)Pd(t-Br)(p-C6H4CN)}2
;75
5.6.2;2.6.2 Palladium -Catalyzed Coupling of Styrene with Iodobenzene;76
6;Chapter 3: Rhodium Atom-Derived Catalysts in the Hydroformylation of 1,3-Dienes and Hydrosilylation of Aromatic
Nitriles;78
6.1;3.1 Introduction;79
6.2;3.2 Preparation of the Catalysts;79
6.2.1;3.2.1 Rhodium Solvated Metal Atoms: Catalyst A;79
6.2.2;3.2.2 Rhodium Dust: Catalyst B;80
6.2.3;3.2.3 Rhodium on y-Al203: Catalyst C;80
6.3;3.3 Hydroformylation of 1,3-Dienes with Rhodium Solvated Metal
Atoms — Catalyst A;80
6.4;3.4 Hydrosilylation of Aromatic Nitriles with Rhodium Dust and Rhodium on .
-Al203;82
7;Chapter 4: In Situ Catalysts in Enantioselective
Organic Transformations;86
7.1;4.1 Introduction;87
7.2;4.2 Enantioselective Hydrogenation of Z-(a)-N-Acetamidocinnamic
Acid;87
7.3;4.3 Enantioselective Hydrosilylation of Acetophenone with
Diphenylsilane;89
7.4;4.4 Enantioselective Synthesis of 4-Phenyldeltacyclene;90
8;Chapter 5:
Enantioselective Hydrogenations;92
8.1;5.1 Application of Solvias Josiphos Complexes for the Enantioselective Hydrogenation of Selected C=N, C=C and C=0
Functions;93
8.1.1;5.1.1 Introduction;93
8.1.2;5.1.2 Catalysts;93
8.1.3;5.1.3 Hydrogenation Procedure;94
8.1.4;5.1.4 Discussion;95
8.1.5;5.1.5 Conclusions;97
8.2;5.2 Immobilized Rh- and Ir-Diphosphine Complexes for
Enantioselective Hydrogenation;97
8.2.1;5.2.1 Introduction;97
8.2.2;5.2.2 Immobilization of Functionalized Diphosphine Ligands;98
8.2.3;5.2.3 Discussion of Immobilized Catalysts;100
8.2.4;5.2.4 Catalysts Precursors;101
8.2.5;5.2.5 Hydrogenation Procedures;102
8.2.6;5.2.6 Discussion of Hydrogenation Reactions;103
8.2.7;5.3 Application of Cinchona-Modified Pt/Al203 Catalysts for the Enantioselective Hydrogenation of a
-Functionalized Ketones;104
8.2.7.1;5.3.1 Introduction;104
8.2.7.2;5.3.2 Catalyst Types and Pretreatment;104
8.2.7.3;5.3.3 Modifiers;105
8.2.7.4;5.3.4 Hydrogenation Procedure;106
8.2.7.5;5.3.5 Scope of the Method;107
9;Chapter 6: Application of Cp*-Ruthenium(II) Catalysts in Stereoselective
Hydrogenation of Sorbic Acid;108
9.1;6.1 Introduction;109
9.2;6.2 (Pentamethylcyclopentadienypl)ruthenium(.4-Sorbic Acid) Triflate and (Pentamethylcyclopentadienyl)ruthenium(.4-Sorbic Acid) Tetrakis[3,5-bis(trifluoromethyl)phenyflborate
;109
9.3;6.3 Stereoselective Hydrogenation of Sorbic Acid (2) and SorbicAlcohol (3);110
10;Chapter 7: Synthesis and Catalytic Application of 1,6-Diene-Palladium(0)
Monophosphine Complexes;113
10.1;7.1 Introduction;114
10.2;7.2 Synthesis of 1,6-Diene-Palladium(0) Monophosphine Complexes;114
10.3;7.3 Suzuki Coupling of Aryl Chlorides and Phenylboronic Acid;115
11;Chapter 8:
Catalyzed Reactions of Aryl Halides;119
11.1;8.1 Pd-Catalyzed Synthesis of Primary Aromatic Amides from Aryl
Halides;120
11.1.1;8.1.1 Introduction;120
11.1.2;8.1.2 Catalysts;120
11.1.3;8.1.3 The Reaction;121
11.1.4;8.1.4 Scope of the Method;121
11.1.5;8.1.5 Variations in the Procedure;121
11.2;8.2 Suzuki Reaction of Aryl Chlorides Catalyzed by Ni-Phosphine
Complexes;123
11.2.1;8.2.1 Introduction;123
11.2.2;8.2.2 Catalyst Precursors;123
11.2.3;8.2.3 The Reaction;123
11.2.4;8.2.4 Scope of the Method;124
11.2.5;8.2.5 Variations in the Procedure;124
11.3;8.3 Pd-Catalyzed Coupling of Malononitrile with Aryl Bromides;125
11.3.1;8.3.1 Introduction;125
11.3.2;8.3.2 Catalyst Precursors;125
11.3.3;8.3.3 The Reaction;125
11.3.4;8.3.4 Scope of the Method;126
11.3.5;8.3.5 Variations in the Procedure;126
12;Chapter 9: An Easy-To-Use Heterogeneous Catalyst for the Knoevenagel
Condensation;128
12.1;9.1 Introduction;129
12.2;9.2 Catalysts;129
12.3;9.3 The Reaction;129
12.4;9.4 Scope of the Method;129
13;Chapter 10: Oxidative Functionalization of Methane and Other Alkanes Catalyzed by Vanadium Complexes Containing
Pyrazole-2-carboxylato Ligands;131
13.1;10.1 Introduction;132
13.2;10.2 Catalysts;132
13.3;10.3 Oxidative Functionalization of Methane;133
13.4;10.4 Oxidative Functionalization of Cyclohexane;134
14;Chapter 11: Hydrogenation of Benzene and Benzene Derivatives Catalyzed by Cationic Arene Ruthenium Clusters
under Biphasic Conditions;136
14.1;11.1 Introduction;137
14.2;11.2 Catalysts;137
14.3;11.3 Hydrogenation of Benzene and Benzene Derivatives;138
15;Chapter 12: Synthesis and Catalytic Applications of
Re(VII) and Mo(VI) Oxo Complexes;141
15.1;12. 1 Synthesis of Organotrioxorhenium(VII) Complexes;142
15.1.1;12 1.1 Syntheses* of Methyltrioxorhenium(VII) (MTO; CH3ReO3);142
15.1.2;12.1.2 Syntheses of Alkylrhenium(VII) Trioxides, RReO3
;146
15.1.3;12.1.3 Synthesis of Cyclopentadienyltrioxorhenium(VII), (C5H5)Re03, and
Derivatives;148
15.2;12.2 Alkyltrioxorhenium Lewis Base Adducts;148
15.2.1;12.2.1 The Quinuclidine Adducts as Examples for Aliphatic Lewis Base
Adducts;149
15.2.2;12.2.2 The Pyrazole Adducts as Examples for Aromatic Lewis Base Adducts;149
15.3;12.3 Organorhenium(VII)peroxo Complexes;150
15.3.1;12.3.1 Methyl(oxo)d(.2-peroxo)rhenium(VII) Hydrate — CH3ReO(02)2
• H2O;150
15.3.2;12.3.2 Synthesis of Diglyme Adducts of Methyl(oxo)di(.2-peroxo)rhenium(VII) Hydrate and µ-Oxobis[aquo(oxo)diperoxorhenium(VII)
];151
15.4;12.4 Catalysis Mediated by Alkylrhenium Trioxides;152
15.4.1;12.4.1 Oxidation of Olefins using MTO as a Catalyst;153
15.4.2;12.4.2 Oxidation of Aromatic Compounds;156
15.4.3;12.4.3 Oxidation of Native Starch [Oxidation of -C(6)H2OH to a Carboxyl
Group];157
15.5;12.5 Synthesis and Applications of Octahedral Dioxomolybdenum(VI)
Complexes;157
15.5.1;12.5.1 Synthesis of Lewis-Base Adducts of Dihalodioxomolybdenum(VI) and
Application in Olefin Epoxidation;158
15.5.2;12.5.2 Synthesis of Lewis-Base Adducts of Dimethyldioxomolybdenum(VI) and
Application in Olefin-Epoxidation;160
16;Chapter 13: Synthesis and Application of Organyl-Cobalt Cocycl
ization Catalysts;163
16.1;13.1 Introduction;164
16.2;13.2 Pyridines;164
16.2.1;13.2.1 Alkyl- and Alkenylpyridines;164
16.2.2;13.2.2 2 -Amino- and 2-Alkylthiopyridines;166
16.2.3;13.2.3 Bipyridyls;168
16.3;13.3 Preparation of the Catalysts;169
16.3.1;13.3.1 .5-Cyclopentadienyl -Co(cod);169
16.3.2;13.3.2 .5-Trimethylsilylcyclopentadienyl-Co(cod);170
16.3.3;13.3.3 .5-Indenyl-Co(cod);170
16.3.4;13.3.4 .6-1-Phenylborininato-Co(cod);171
17;Chapter 14:
Polymerization Reactions;172
17.1;14.1: Solvent-Stabilized Transition Metal Cations as Initiators forCyclopentadiene Polymerization;173
17.2;14.2 Polymerization Experiments;175
17.3;14.3 Synthesis of the Initiators;175
18;Chapter 15: Catalysts for Alkene Polymerization;181
18.1;15.1 Metallacyclic Metallocene Complexes as Catalysts for Ethylene Polymerization;182
18.1.1;15.1.1 Introduction;182
18.1.2;15.1.2 Synthesis of the Catalysts;182
18.1.3;15.1.3 Polymerization of Ethylene;183
18.2;15.2 Synthesis of Bridged Bis(fluorenyl) Complexes of Zirconium and Their Application for Homogeneous Ethylene Polymerization;184
18.2.1;15.2.1 Introduction;184
18.2.2;15.2.2 Synthesis of the Catalysts;185
18.2.3;15.2.3 Homogeneous Polymerization of Ethylene;186
18.3;15.3 Application of Self-Immobilizing Metallocene Catalysts For Ethylene Polymerization;188
18.3.1;15.3.1 Introduction;188
18.3.2;15.3.2 Synthesis of the Catalysts;188
18.3.3;15.3.3 Ethylene Polymerization with Self-Immobilizing Catalysts;190
18.4;15.4 Synthesis of Various Substituted ansa-Cyclopentadienyl-Fluorenyl Complexes of Zirconium and Their Application for Homogeneous Propene Polymerization;191
18.4.1;15.4.1 Introduction;191
18.4.2;15.4.2 Synthesis of the Catalysts;191
18.4.3;15.4.3 Syndiospecific Polymerization of Propene;192
19;Chapter 16: Application of Cationic Nickel(II) Complexes with Biphosphine Monoxide LigandsPh2P(CH2)nP(0) Ph2 (n = 1 — 3) in Ethylene Oligomerization;194
19.1;16.1 Introduction;195
19.2;16.2 Synthesis of the Catalysts;195
19.3;16.3 Ethylene Oligomerization;197
20;Chapter 17: Bridged Cyclopentadienyl-Fluorenyl Zirconocenes and Their Use in the Polymerization of Propylene;199
20.1;17.1 Synthesis of Bridged, Unsubstituted Cyclopentadienyl-Fluorenyl Zirconocenes;200
20.2;17.2 Synthesis of Cationic Cyclopentadienyl-Fluorenyl Zirconocenes;201
20.3;17.3 Synthesis of Bridged, Substituted Cyclopentadienyl-Fluorenyl Zirconocenes;202
20.4;17.4 Polymerization with Bridged Cyclopentadienyl-Fluorenyl Zirconocenes;204
20.4.1;17.4.1 Polymerization Mechanisms;205
20.4.2;17.4.2 Polymerization Procedure;207
21;Chapter 18: Application of Palladium(II) Diphosphine Catalysts in the Alternating Copolymerization of Ethene with Carbon Monoxide;208
21.1;18.1 Introduction;209
21.2;18.2 Copolymerization of Ethene with CO in Methanol;210
21.3;18.3 Copolymerization of Ethene with CO in Water;211
21.4;18.4 Terpolymerization of Ethene and Propene with CO in Water;213
21.5;18.5 Copolymerization of Ethene with CO in Dichloromethane;214
22;Chapter 19: Applications of Palladium Catalysts in the Polymerization of Ethene/Carbon Monoxide and Telomerization of Butadiene/Ammonia;216
22.1;19.1 Application of Cationic [(Allyl)palladium(PAS)] Catalysts in the Polymerization of Ethene and Carbon Monoxide;217
22.1.1;19.1.1 Synthesis of {(.3-Allyl)[bis(diphenylphosphino)methane monosulfide-.2- P,S]palladium(II)} Tetrafluoroborate (1);217
22.1.2;19.1.2 Polymerization of Ethene and Carbon Monoxide;218
22.2;19.2 Application of Water-Soluble Palladium Catalysts in the Telomerization of Butadiene and Ammonia;219
22.2.1;19.2.1 Synthesis of .3-Ally(diamino)palladium(II) Tetrafluoroborate (1);219
22.2.2;19.2.2 Telomerization of Butadiene and Ammonia;220
23;Chapter 20: Manufacture of Heterogeneous Mono- and Bimetallic Colloid Catalysts and Their Applications in Fine Chemical Synthesis and Fuel Cells;223
23.1;20.1 Introduction;224
23.2;20.2 Synthesis of Pt Precursors;225
23.3;20.3 Application of Colloidal Pt/C for the Selective Hydrogenation of 3,4-Dichloronitrobenzene;227
23.3.1;20.3.1 Preparation of the Pt Hydrosols;228
23.3.2;20.3.2 Preparation of Colloidal Pt/Activated Carbon Catalysts;230
23.3.3;20.3.3 Hydrogenation of 3,4-Dichloronitrobenzene;230
23.3.4;20.4 Applications in Catalysis;231
23.3.4.1;20.4.1 Preparation of the Colloids and Catalysts;232
23.3.4.2;20.4.2 Adsorption of the Colloids on the Support;233
23.3.4.3;20.4.3 Catalytic Oxidation of Glucose;233
23.3.4.4;20.4.4 Hydrogenation of 3 -Hexyn-1-ol;234
23.3.5;20.5 Application of Colloidal Pt/Ru/Vulcan as Fuel Cell Catalysts;235
23.3.5.1;20.5.1 Preparation of the Catalyst Precursors;235
23.3.5.2;20.5.2 Preparation of Fuel Cell Catalysts;236
24;Index;239