Hein | Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen | E-Book | sack.de
E-Book

E-Book, Deutsch, 255 Seiten, eBook

Reihe: Hochschultext

Hein Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen

E-Book, Deutsch, 255 Seiten, eBook

Reihe: Hochschultext

ISBN: 978-3-642-74340-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Eine gleichermaßen aktuelle wie zusammenfassende Darstellung der wichtigsten Methoden zur Untersuchung der klassischen Gruppen fehlte bislang in deutschsprachigen Lehrbüchern. Indem der Autor die klassischen Gruppen sowohl aus algebraisch-geometrischer Sicht, wie auch mit Lieschen (infinitesimalen) Methoden studiert, schließt er diese Lücke. Die von Grund auf behandelte Darstellungstheorie mündet im algebraischen Teil in der Brauer-Weylschen Methode der Zerlegung von Tensorpotenzen durch Youngsche Symmetrieoperatoren in irreduzible Teilräume. Auf der Ebene der Lie-Algebren wird die Klassifikation der irreduziblen Darstellungen durch höchste Gewichte durchgeführt. Besonderer Wert liegt auf einer ausführlichen Erläuterung des Zusammenspiels der Gruppen und ihrer Lie-Algebren, die das Kernstück der Lieschen Theorie ausmachen. In dieser Hinsicht dient das Buch auch als Einführung in die Theorie der Lie-Gruppen; zur Parametrisierung wird dabei ausschließlich die Matrix-Exponentialabbildung verwandt, wodurch ganz auf den aufwendigen Apparat der differenzierbaren Mannigfaltigkeiten verzichtet werden kann. Eine Fülle von Beispielen und Übungsaufgaben dienen zur Vertiefung des Gelernten. Inhaltlich schließt der Text unmittelbar an die Grundvorlesungen über Analysis und Lineare Algebra an.
Hein Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


I. Die klassischen Gruppen.- § 1 Grundlagen der allgemeinen Gruppentheorie.- § 2 Die allgemeine und die spezielle lineare Gruppe.- § 3 Symmetrische Bilinearformen und Hermitesche Formen.- § 4 Orthogonale und unitäre Gruppen.- §5 Symplektische Gruppen.- II. Abgeschlossene Untergruppen von GL(n, K).- § 1 Die Matrix-Exponentialabbildung.- § 2 Lineare Gruppen und ihre Lie-Algebren.- § 3 Homomorphismen linearer Gruppen und ihrer Lie-Algebren.- III. Darstellungen der klassischen Gruppen.- § 1 Grundlagen der allgemeinen Darstellungstheorie von Gruppen.- § 2 Darstellungstheorie der klassischen Gruppen (globale Methode).- IV. Halbeinfache komplexe Lie-Algebren.- § 1 Von der Darstellungstheorie linearer Gruppen zur Darstellungstheorie von Lie-Algebren.- § 2 Halbeinfache Lie-Algebren.- § 3 Darstellungen halbeinfacher Lie-Algebren.- Literatur.- Symbolverzeichnis.- Namenverzeichnis.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.