E-Book, Englisch, 320 Seiten, Web PDF
E-Book, Englisch, 320 Seiten, Web PDF
ISBN: 978-1-4832-6322-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Martingale Limit Theory and its Application;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;10
6;Notation;13
7;Chapter 1. Introduction;14
7.1;1.1. General Definition;14
7.2;1.2. Historical Interlude;14
7.3;1.3. The Martingale Convergence Theorem;15
7.4;1.4. Comments on Classical Limit Theory and Its Analogs;16
7.5;1.5. On the Repertoire of Avaiiabie Limit Theory;19
7.6;1.6. Martingale Limit Theorems Generalizing Those for Sums of Independent Random Variables;21
7.7;1.7. Martingale Limit Theorems Viewed as Rate of Convergence Results in the Martingale Convergence Theorem;23
8;Chapter 2. Inequalities and Laws ofLarge Numbers;26
8.1;2.1. Introduction;26
8.2;2.2. Basic Inequaiities;27
8.3;2.3 The Martingale Convergence Theorem;30
8.4;2.4. Square Function Inequalities;36
8.5;2.5. Weak Law of Large Numbers;42
8.6;2.6. Strong Law of Large Numbers;44
8.7;2.7 Convergence in LP;54
9;Chapter 3. The Central Limit Theorem;64
9.1;3.1. Introduction;64
9.2;3.2. The Central Limit Theorem;65
9.3;3.3. Toward a General Central Limit Theorem;78
9.4;3.4. Raikov-Type Results in the Martingale CLT;82
9.5;3.5. Reverse Martingales and Martingale Tail Sums;89
9.6;3.6. Rates off Convergence in the CLT;94
10;Chapter 4. Invariance Principles in the Central Limit Theorem and Law of the Iterated Logarithm;110
10.1;4.1. Introduction;110
10.2;4.2. Invariance Principles in the CLT;110
10.3;4.3. Rates of Convergence for the Invariance Principle in the CLT;122
10.4;4.4. The Law of the Iterated Logarithm and its Invarlance Principle;128
11;Chapter 5. Limit Theory for Stationary Processes via Corresponding Results for Approximating Martingales;140
11.1;5.1. Introduction;140
11.2;5.2. The Probabilistic Framework;141
11.3;5.3. The Central Limit Theorem;141
11.4;5.4. Functional Forms of the Central Limit Theorem and Law of the Iterated Logarithm;153
11.5;5.5. The Central Limit Theorem via Approximation to the Distribution of the Stationary Process;160
12;Chapter 6. Estimation of Parameters from Stochastic Processes;168
12.1;6.1. Introduction;168
12.2;6.2. Asymptotic Behaviour of the Maximum Likelihood Estimator;169
12.3;6.3. Conditional Least Squares;185
12.4;6.4. Quadratic Functions of Discrete Time Series;195
12.5;6.5. The Method of Moments;208
13;Chapter 7. Miscellaneous Applications;214
13.1;7.1. Exchangeable Sequences;214
13.2;7.2. Limit Laws for Subsequences of Sequences of Random Variables;218
13.3;7.3. Limit Laws for Subadditive Processes;226
13.4;7.4. The Hawkins Random Sieve;239
13.5;7.5. Genetic Balance When the Population Size is Varying;248
13.6;7.6. Stochastic Approximation;251
13.7;7.7. On Adaptive Control of Linear Systems;265
14;Appendix;282
14.1;I. The Skorokhod Representation;282
14.2;II. Weak Convergence on Function Spaces;286
14.3;III. Mixing Inequalities;289
14.4;IV. Stationarity and Ergodicity;293
14.5;V. Miscellanea;294
15;References;298
16;Index to T'heorem, and Examples;312
17;Index;314