Gusmão / Martins / Horta | Analog IC Placement Generation via Neural Networks from Unlabeled Data | Buch | 978-3-030-50060-3 | sack.de

Buch, Englisch, 87 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 172 g

Reihe: SpringerBriefs in Applied Sciences and Technology

Gusmão / Martins / Horta

Analog IC Placement Generation via Neural Networks from Unlabeled Data


1. Auflage 2020
ISBN: 978-3-030-50060-3
Verlag: Springer International Publishing

Buch, Englisch, 87 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 172 g

Reihe: SpringerBriefs in Applied Sciences and Technology

ISBN: 978-3-030-50060-3
Verlag: Springer International Publishing


In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the placement task in analog integrated circuit layout design, by creating a generalized model that can generate valid layouts at push-button speed. Further, it exploits ANNs’ generalization and push-button speed prediction (once fully trained) capabilities, and details the optimal description of the input/output data relation. The description developed here is chiefly reflected in two of the system’s characteristics: the shape of the input data and the minimized loss function. In order to address the latter, abstract and segmented descriptions of both the input data and the objective behavior are developed, which allow the model to identify, in newer scenarios, sub-blocks which can be found in the input data. This approach yields device-level descriptions of the input topology that, for each device, focus on describing its relation to every other device in the topology. By means of thesedescriptions, an unfamiliar overall topology can be broken down into devices that are subject to the same constraints as a device in one of the training topologies.

In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model’s effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem’s context (high label production cost), resulting in an efficient, inexpensive and fast model.                           

Gusmão / Martins / Horta Analog IC Placement Generation via Neural Networks from Unlabeled Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Related Work: Machine Learning and Electronic Design Automation.- Unlabeled Data and Artificial Neural Networks.- Placement Loss: Placement Constraints Description and Satisfiability Evaluation.- Experimental Results in Industrial Case Studies.- Conclusions. 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.