Guo / PhD / Ph.D. | Petroleum Production Engineering, A Computer-Assisted Approach | E-Book | sack.de
E-Book

E-Book, Englisch, 312 Seiten

Guo / PhD / Ph.D. Petroleum Production Engineering, A Computer-Assisted Approach


1. Auflage 2011
ISBN: 978-0-08-047995-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 312 Seiten

ISBN: 978-0-08-047995-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Petroleum Production Engineering, A Computer-Assisted Approach provides handy guidelines to designing, analyzing and optimizing petroleum production systems. Broken into four parts, this book covers the full scope of petroleum production engineering, featuring stepwise calculations and computer-based spreadsheet programs. Part one contains discussions of petroleum production engineering fundamentals, empirical models for production decline analysis, and the performance of oil and natural gas wells. Part two presents principles of designing and selecting the main components of petroleum production systems including: well tubing, separation and dehydration systems, liquid pumps, gas compressors, and pipelines for oil and gas transportation. Part three introduces artificial lift methods, including sucker rod pumping systems, gas lift technology, electrical submersible pumps and other artificial lift systems. Part four is comprised of production enhancement techniques including, identifying well problems, designing acidizing jobs, guidelines to hydraulic fracturing and job evaluation techniques, and production optimization techniques.
*Provides complete coverage of the latest techniques used for designing and analyzing petroleum production systems
*Increases efficiency and addresses common problems by utilizing the computer-based solutions discussed within the book
* Presents principles of designing and selecting the main components of petroleum production systems

A professor of petroleum and natural gas engineering at the New Mexico Institute of Mining and Technology, Socorro, New Mexico.

Guo / PhD / Ph.D. Petroleum Production Engineering, A Computer-Assisted Approach jetzt bestellen!

Weitere Infos & Material


1;Cover;1
2;Petroleum Production Engineering;4
3;Copyright Page;5
4;Dedication Page;6
5;Contents;8
6;Preface;10
7;List of Symbols;12
8;List of Tables;16
9;List of Figures;18
10;Part I: Petroleum Production Engineering Fundamentals;22
10.1;Chapter 1: Petroleum Production System;24
10.1.1;1.1 Introduction;25
10.1.2;1.2 Reservoir;25
10.1.3;1.3 Well;26
10.1.4;1.4 Separator;29
10.1.5;1.5 Pump;30
10.1.6;1.6 Gas Compressor;31
10.1.7;1.7 Pipelines;32
10.1.8;1.8 Safety Control System;32
10.1.9;1.9 Unit Systems;38
10.1.10;Summary;38
10.1.11;References;38
10.1.12;Problems;38
10.2;Chapter 2: Properties of Oil and Natural Gas;40
10.2.1;2.1 Introduction;41
10.2.2;2.2 Properties of Oil;41
10.2.3;2.3 Properties of Natural Gas;42
10.2.4;Summary;47
10.2.5;References;47
10.2.6;Problems;47
10.3;Chapter 3: Reservoir Deliverability;50
10.3.1;3.1 Introduction;51
10.3.2;3.2 Flow Regimes;51
10.3.3;3.3 Inflow Performance Relationship;53
10.3.4;3.4 Construction of IPR Curves Using Test Points;56
10.3.5;3.5 Composite IPR of Stratified Reservoirs;58
10.3.6;3.6 Future IPR;60
10.3.7;Summary;63
10.3.8;References;63
10.3.9;Problems;64
10.4;Chapter 4: Wellbore Performance;66
10.4.1;4.1 Introduction;67
10.4.2;4.2 Single-Phase Liquid Flow;67
10.4.3;4.3 Multiphase Flow in Oil Wells;69
10.4.4;4.4 Single-Phase Gas Flow;74
10.4.5;4.5 Mist Flow in Gas Wells;77
10.4.6;Summary;77
10.4.7;References;78
10.4.8;Problems;78
10.5;Chapter 5: Choke Performance;80
10.5.1;5.1 Introduction;81
10.5.2;5.2 Sonic and Subsonic Flow;81
10.5.3;5.3 Single-Phase Liquid Flow;81
10.5.4;5.4 Single-Phase Gas Flow;81
10.5.5;5.5 Multiphase Flow;84
10.5.6;Summary;87
10.5.7;References;87
10.5.8;Problems;87
10.6;Chapter 6: Well Deliverability;90
10.6.1;6.1 Introduction;91
10.6.2;6.2 Nodal Analysis;91
10.6.3;6.3 Deliverability of Multilateral Well;100
10.6.4;Summary;105
10.6.5;References;106
10.6.6;Problems;106
10.7;Chapter 7: Forecast of Well Production;108
10.7.1;7.1 Introduction;109
10.7.2;7.2 Oil Production during Transient Flow Period;109
10.7.3;7.3 Oil Production during Pseudo–Steady Flow Period;109
10.7.4;7.4 Gas Production during Transient Flow Period;113
10.7.5;7.5 Gas Production during Pseudo–Steady-State Flow Period;113
10.7.6;Summary;115
10.7.7;References;115
10.7.8;Problems;116
10.8;Chapter 8: Production Decline Analysis;118
10.8.1;8.1 Introduction;119
10.8.2;8.2 Exponential Decline;119
10.8.3;8.3 Harmonic Decline;121
10.8.4;8.4 Hyperbolic Decline;121
10.8.5;8.5 Model Identification;121
10.8.6;8.6 Determination of Model Parameters;122
10.8.7;8.7 Illustrative Examples;122
10.8.8;Summary;125
10.8.9;References;125
10.8.10;Problems;125
11;Part II: Equipment Design and Selection;128
11.1;Chapter 9: Well Tubing;130
11.1.1;9.1 Introduction;131
11.1.2;9.2 Strength of Tubing;131
11.1.3;9.3 Tubing Design;132
11.1.4;Summary;135
11.1.5;References;135
11.1.6;Problems;135
11.2;Chapter 10: Separation Systems;138
11.2.1;10.1 Introduction;139
11.2.2;10.2 Separation System;139
11.2.3;10.3 Dehydration System;146
11.2.4;Summary;153
11.2.5;References;153
11.2.6;Problems;153
11.3;Chapter 11: Transportation Systems;154
11.3.1;11.1 Introduction;155
11.3.2;11.2 Pumps;155
11.3.3;11.3 Compressors;157
11.3.4;11.4 Pipelines;164
11.3.5;Summary;177
11.3.6;References;178
11.3.7;Problems;178
12;Part III: Artificial Lift Methods;180
12.1;Chapter 12: Sucker Rod Pumping;182
12.1.1;12.1 Introduction;183
12.1.2;12.2 Pumping System;183
12.1.3;12.3 Polished Rod Motion;186
12.1.4;12.4 Load to the Pumping Unit;189
12.1.5;12.5 Pump Deliverability and Power Requirements;191
12.1.6;12.6 Procedure for Pumping Unit Selection;193
12.1.7;12.7 Principles of Pump Performance Analysis;195
12.1.8;Summary;200
12.1.9;References;200
12.1.10;Problems;200
12.2;Chapter 13: Gas Lift;202
12.2.1;13.1 Introduction;203
12.2.2;13.2 Gas Lift System;203
12.2.3;13.3 Evaluation of Gas Lift Potential;204
12.2.4;13.4 Gas Lift Gas Compression Requirements;206
12.2.5;13.5 Selection of Gas Lift Valves;213
12.2.6;13.6 Special Issues in Intermittent-Flow Gas Lift;222
12.2.7;13.7 Design of Gas Lift Installations;224
12.2.8;Summary;226
12.2.9;References;226
12.2.10;Problems;226
12.3;Chapter 14: Other Artificial Lift Methods;228
12.3.1;14.1 Introduction;229
12.3.2;14.2 Electrical Submersible Pump;229
12.3.3;14.3 Hydraulic Piston Pumping;232
12.3.4;14.4 Progressive Cavity Pumping;234
12.3.5;14.5 Plunger Lift;236
12.3.6;14.6 Hydraulic Jet Pumping;241
12.3.7;Summary;243
12.3.8;References;243
12.3.9;Problems;244
13;Part IV: Production Enhancement;246
13.1;Chapter15: Well Problem Identification;248
13.1.1;15.1 Introduction;249
13.1.2;15.2 Low Productivity;249
13.1.3;15.3 Excessive Gas Production;252
13.1.4;15.4 Excessive Water Production;252
13.1.5;15.5 Liquid Loading of Gas Wells;252
13.1.6;Summary;262
13.1.7;References;262
13.1.8;Problems;263
13.2;Chapter 16: Matrix Acidizing;264
13.2.1;16.1 Introduction;265
13.2.2;16.2 Acid–Rock Interaction;265
13.2.3;16.3 Sandstone Acidizing Design;265
13.2.4;16.4 Carbonate Acidizing Design;268
13.2.5;Summary;269
13.2.6;References;269
13.2.7;Problems;270
13.3;Chapter 17: Hydraulic Fracturing;272
13.3.1;17.1 Introduction;273
13.3.2;17.2 Formation Fracturing Pressure;273
13.3.3;17.3 Fracture Geometry;275
13.3.4;17.4 Productivity of Fractured Wells;277
13.3.5;17.5 Hydraulic Fracturing Design;279
13.3.6;17.6 Post-Frac Evaluation;283
13.3.7;Summary;285
13.3.8;References;285
13.3.9;Problems;286
13.4;Chapter 18: Production Optimization;288
13.4.1;18.1 Introduction;289
13.4.2;18.2 Naturally Flowing Well;289
13.4.3;18.3 Gas-Lifted Well;289
13.4.4;18.4 Sucker Rod–Pumped Well;290
13.4.5;18.5 Separator;291
13.4.6;18.6 Pipeline Network;293
13.4.7;18.7 Gas-Lift Facility;296
13.4.8;18.8 Oil and Gas Production Fields;297
13.4.9;18.9 Discounted Revenue;300
13.4.10;Summary;300
13.4.11;References;300
13.4.12;Problems;301
14;Appendices;302
14.1;Appendix A Unit Conversion Factors;303
14.2;Appendix B The Minimum Performance Properties of API Tubing;304
15;Index;306


List of Figures Figure 1.1: A sketch of a petroleum production system. Figure 1.2: A typical hydrocarbon phase diagram. Figure 1.3: A sketch of a water-drive reservoir. Figure 1.4: A sketch of a gas-cap drive reservoir. Figure 1.5: A sketch of a dissolved-gas drive reservoir. Figure 1.6: A sketch of a typical flowing oil well. Figure 1.7: A sketch of a wellhead. Figure 1.8: A sketch of a casing head. Figure 1.9: A sketch of a tubing head. Figure 1.10: A sketch of a “Christmas tree.” Figure 1.11: Sketch of a surface valve. Figure 1.12: A sketch of a wellhead choke. Figure 1.13: Conventional horizontal separator. Figure 1.14: Double action piston pump. Figure 1.15: Elements of a typical reciprocating compressor. Figure 1.16: Uses of offshore pipelines. Figure 1.17: Safety device symbols. Figure 1.18: Safety system designs for surface wellhead flowlines. Figure 1.19: Safety system designs for underwater wellhead flowlines. Figure 1.20: Safety system design for pressure vessel. Figure 1.21: Safety system design for pipeline pumps. Figure 1.22: Safety system design for other pumps. Figure 3.1: A sketch of a radial flow reservoir model: (a) lateral view, (b) top view. Figure 3.2: A sketch of a reservoir with a constant-pressure boundary. Figure 3.3: A sketch of a reservoir with no-flow boundaries. Figure 3.4: (a) Shape factors for various closed drainage areas with low-aspect ratios.(b) Shape factors for closed drainage areas with high-aspect ratios. Figure 3.5: A typical IPR curve for an oil well. Figure 3.6: Transient IPR curve for Example Problem3.1. Figure 3.7: Steady-state IPR curve for Example Problem 3.1. Figure 3.8: Pseudo–steady-state IPR curve for Example Problem 3.1. Figure 3.9: IPR curve for Example Problem 3.2. Figure 3.10: Generalized Vogel IPR model for partial two-phase reservoirs. Figure 3.11: IPR curve for Example Problem 3.3. Figure 3.12: IPR curves for Example Problem 3.4, Well A. Figure 3.13: IPR curves for Example Problem 3.4, Well B Figure 3.14: IPR curves for Example Problem 3.5. Figure 3.15: IPR curves of individual layers. Figure 3.16: Composite IPR curve for all the layers open to flow. Figure 3.17: Composite IPR curve for Group 2 (LayersB4, C1, and C2). Figure 3.18: Composite IPR curve for Group 3 (LayersB1, A4, and A5). Figure 3.19: IPR curves for Example Problem 3.6. Figure 3.20: IPR curves for Example Problem 3.7. Figure 4.1: Flow along a tubing string. Figure 4.2: Darcy–Wiesbach friction factor diagram. Figure 4.3: Flow regimes in gas-liquid flow. Figure 4.4: Pressure traverse given by Hagedorn BrownCorreltion.xls for Example. Figure 4.5: Calculated tubing pressure profile for Example Problem 4.5. Figure 5.1: A typical choke performance curve. Figure 5.2: Choke flow coefficient for nozzle-type chokes. Figure 5.3: Choke flow coefficient for orifice-type chokes. Figure 6.1: Nodal analysis for Example Problem 6.1. Figure 6.2: Nodal analysis for Example Problem 6.4. Figure 6.3: Nodal analysis for Example Problem 6.5. Figure 6.4: Nodal analysis for Example Problem 6.6. Figure 6.5: Nodal analysis for Example Problem 6.8. Figure 6.6: Schematic of a multilateral well trajectory. Figure 6.7: Nomenclature of a multilateral well. Figure 7.1: Nodal analysis plot for Example Problem 7.1. Figure 7.2: Production forecast for Example Problem 7.2. Figure 7.3: Nodal analysis plot for Example Problem 7.2. Figure 7.4: Production forecast for Example Problem 7.2 Figure 7.3: Production forecast for Example Problem 7.3. Figure 7.4: Result of production forecast for Example Problem 7.4. Figure 8.1: A semilog plot of q versus t indicating an exponential decline. Figure 8.2: A plot of Np versus q indicating an exponential decline. Figure 8.3: A plot of log(q) versus log(t) indicating a harmonic decline. Figure 8.4: A plot of Np versus log(q) indicating a harmonic decline. Figure 8.5: A plot of relative decline rate versus production rate. Figure 8.6: Procedure for determining a- and b-values. Figure 8.7: A plot of log(q) versus t showing an exponential decline. Figure 8.8: Relative decline rate plot showing exponential decline. Figure 8.9: Projected production rate by an exponential decline model. Figure 8.10: Relative decline rate plot showing harmonic decline. Figure 8.11: Projected production rate by a harmonic decline model. Figure 8.12: Relative decline rate plot showing hyperbolic decline. Figure 8.13: Relative decline rate plot showing hyperbolic decline. Figure 8.14: Projected production rate by a hyperbolic decline model. Figure 9.1: A simple uniaxial test of a metal specimen. Figure 9.2: Effect of tension stress on tangential stress. Figure 9.3: Tubing–packer relation. Figure 9.4: Ballooning and buckling effects. Figure 10.1: A typical vertical separator. Figure 10.2: A typical horizontal separator. Figure 10.3: A typical horizontal double-tube separator. Figure 10.4: A typical horizontal three-phase separator. Figure 10.5: A typical spherical low-pressure separator. Figure 10.6: Water content of natural gases. Figure 10.7: Flow diagram of a typical solid desiccant dehydration plant. Figure 10.8: Flow diagram of a typical glycol dehydrator. Figure 10.9: Gas capacity of vertical inlet scrubbers based on 0.7-specific gravity at 100 °F. Figure 10.10: Gas capacity for trayed glycol contactors based on 0.7-specific gravity at 100 °F. Figure 10.11: Gas capacity for packed glycol contactors based on 0.7-specific gravity...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.