Günther / Sens | Ignition Systems for Gasoline Engines | E-Book | sack.de
E-Book

E-Book, Englisch, 324 Seiten, eBook

Günther / Sens Ignition Systems for Gasoline Engines

3rd International Conference, November 3-4, 2016, Berlin, Germany
1. Auflage 2017
ISBN: 978-3-319-45504-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

3rd International Conference, November 3-4, 2016, Berlin, Germany

E-Book, Englisch, 324 Seiten, eBook

ISBN: 978-3-319-45504-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The volume includes selected and reviewed papers from the 3rd Conference on Ignition Systems for Gasoline Engines in Berlin in November 2016. Experts from industry and universities discuss in their papers the challenges to ignition systems in providing reliable, precise ignition in the light of a wide spread in mixture quality, high exhaust gas recirculation rates and high cylinder pressures. Classic spark plug ignition as well as alternative ignition systems are assessed, the ignition system being one of the key technologies to further optimizing the gasoline engine.
Günther / Sens Ignition Systems for Gasoline Engines jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1;Contents;5
2;Requirements for Ignition Systems;8
3;Challenges to the Ignition System of Future Gasoline Engines – An Application Oriented Systems Comparison;9
3.1;Abstract;9
3.2;1 Introduction;9
3.3;2 Challenges to Ignitions Systems Within the Engine Map;10
3.4;3 Test Setup and Procedure;13
3.4.1;3.1 Engines for Thermodynamic Testing;13
3.4.2;3.2 Ignition Systems;13
3.5;4 Results;15
3.5.1;4.1 Potentials in Part Load;15
3.5.2;4.2 Potentials in Upper Part Load;21
3.5.3;4.3 Potentials at High Load;22
3.5.4;4.4 Transient Behavior;26
3.5.5;4.5 Functional Integration Aspects;28
3.6;5 Conclusion;30
3.7;Acknowledgements;31
3.8;References;31
4;Extension of Operating Window for Modern Combustion Systems by High Performance Ignition;32
4.1;Abstract;32
4.2;1 Introduction;32
4.3;2 Requirements on Ignition System for Modern Combustion Concepts;35
4.3.1;2.1 Requirements for Efficient Combustion;35
4.3.2;2.2 Derived Component Requirements;39
4.3.3;2.3 Requirements Development vs. Ignition Solutions;41
4.4;3 CEI Working Principle and Sample Status;42
4.4.1;3.1 CEI Working Principle;42
4.4.2;3.2 CEI Sample Status and Performance Measurement Results;45
4.5;4 Engine Results;47
4.5.1;4.1 Potential Study for EGR Combustion Concepts;48
4.5.2;4.2 Potential Study for Lean Combustion Concepts;53
4.6;5 Summary;55
4.7;References;56
5;Demonstration of Improved Dilution Tolerance Using a Production-Intent Compact Nanosecond Pulse Ignition System;58
5.1;Abstract;58
5.2;1 Introduction;59
5.2.1;1.1 Technical Approach;59
5.3;2 Ignition System;63
5.3.1;2.1 Ignition Module;64
5.3.2;2.2 Measurement;64
5.4;3 Experimental Setup;64
5.5;4 Results;65
5.6;5 Discussion;68
5.7;6 Conclusion;69
5.8;Acknowledgements;70
5.9;References;70
6;Operating Conditions/Flammability;72
7;Study of Ignitability in Strong Flow Field;73
7.1;Abstract;73
7.2;1 Introduction;73
7.3;2 Direction of the Study;75
7.4;3 Analysis of Discharge Channel Behavior and Initial Flame Propagation in Strong Flow Fields;75
7.4.1;3.1 Effect of Strong Flow Fields on Ignitability;75
7.4.2;3.2 Analysis of Misfire Mechanism;77
7.5;4 Effect of Discharge Specifications on Discharge Channel Behavior and Initial Flame Propagation;81
7.5.1;4.1 Effect of Discharge Current and Duration;81
7.5.2;4.2 Optimizing Discharge Specifications;85
7.6;5 Conclusion;86
7.7;Acknowledgment;87
7.8;References;87
8;Simulation of Ignition;89
9;Simulating Extreme Lean Gasoline Combustion – Flow Effects on Ignition;90
9.1;Abstract;90
9.2;1 Introduction;90
9.3;2 Challenges of Lean Burn Combustion;91
9.4;3 Experimental Study on Lean Burn Combustion;93
9.4.1;3.1 Test Bench Setup and Instrumentation;93
9.4.2;3.2 Thermodynamic Engine Testing;95
9.5;4 Lean Mixtures Ignition and Combustion Model;96
9.6;5 Extreme Lean Concept Study;100
9.6.1;5.1 Charge Motion Design;100
9.6.2;5.2 Predictive 1D-Model;102
9.6.3;5.3 Extreme Lean Concept Study;103
9.7;6 Conclusion and Outlook;106
9.8;References;107
10;New Ignition Systems 1;109
11;High Energy Multipole Distribution Spark Ignition System;110
11.1;Abstract;110
11.2;1 Introduction;110
11.3;2 Experimental Setups;113
11.3.1;2.1 Three-pole Spark Plug and Ignition System Configurations;113
11.3.2;2.2 Constant Volume Combustion Vessels;115
11.3.3;2.3 Single-Cylinder Engine Dynamometer Test;117
11.4;3 Results and Discussions;118
11.4.1;3.1 Evaluation on the Constant Volume Combustion Vessels;118
11.4.2;3.2 Evaluation on the Single Cylinder Engine;123
11.5;4 Future Works;129
11.6;5 Conclusions;129
11.7;Acknowledgements;130
11.8;References;130
12;Development of Homogeneous Charged Multi-point Ignition Engine;132
12.1;Abstract;132
12.2;1 Introduction;132
12.3;2 System Configuration of Multi-point Ignition;133
12.4;3 Realization of Fast Combustion by Multi-point Ignition;134
12.5;4 Performance Evaluation of a Multi-point Ignition Engine;135
12.5.1;4.1 Retardation of Ignition Timing;135
12.5.2;4.2 Realization of Lean Combustion;136
12.5.3;4.3 Realization of High Compression Ratio by a Multi-point Ignition;137
12.6;5 Consideration of the Effect of Thermal Efficiency Improvement by Multi-point Ignition;137
12.7;6 Conclusion;140
12.8;7 Closing Remark;140
12.9;Reference;140
13;Development of an Ignition Coil Integrated System to Monitor the Spark Plugs Wear;141
13.1;Abstract;141
13.2;1 Introduction;141
13.3;2 Ignition Process;143
13.4;3 Breakdown Voltage Determinant Factors;144
13.4.1;3.1 Paschen Law;145
13.5;4 Microcontroller-Based Ignition Control;146
13.5.1;4.1 Indirect Measurement of Breakdown Voltage;147
13.6;5 Conclusions;151
13.7;References;151
14;Components;153
15;Fatigue Life Simulation and Analysis of an Ignition Coil;154
15.1;Abstract;154
15.2;1 Introduction;154
15.3;2 Ignition Coil;155
15.4;3 Thermal Fatigue and Durability of Primary Wire;156
15.5;4 Assembly Loads and In-Service Thermal Operating Conditions;156
15.6;5 Computer Simulation Modelling and Analysis for Predicting Thermal Fatigue Durability;158
15.6.1;5.1 Simulating Primary Wire Assembly;158
15.6.2;5.2 Simulating in-Service Thermal Cycling of Coil Assembly;159
15.6.3;5.3 Thermal Fatigue Life Evaluation of the Primary Wire;161
15.7;6 Lab Test Results and Comparison with Simulation Results;162
15.8;7 Conclusions;163
15.9;Acknowledgments;164
15.10;References;164
16;Visualization of Ignition Processes;165
17;Calorimetry and Atomic Oxygen Laser-Induced Fluorescence of Pulsed Nanosecond Discharges at Above-Atmospheric Pressures;166
17.1;Abstract;166
17.2;1 Introduction;166
17.3;2 Experiment Description;169
17.3.1;2.1 Pressure-Rise Calorimetry;169
17.3.2;2.2 O-Atom Two-Photon Laser Induced Fluorescence;171
17.4;3 Results and Discussion;172
17.4.1;3.1 Pressure-Rise Calorimetry;172
17.4.2;3.2 LTP Two-Photon Laser Induced Fluorescence;178
17.4.3;3.3 Discussion;180
17.5;4 Conclusions;182
17.6;Acknowledgements;183
17.7;References;184
18;Comparing Visualization of Inflammation at Transient Load Steps Comparing Ignition Systems;187
18.1;Abstract;187
18.2;1 Introduction;187
18.3;2 Experimental Setup;188
18.3.1;2.1 Requirements for Engine Testing in Transient Operation;188
18.3.2;2.2 Engine in the Loop as Test Bed with Synchronized Measurements;188
18.4;3 Investigated Transient Processes;190
18.5;4 Camera Measurements of Chemiluminescence as Tool for Flame Kernel Investigation;191
18.6;5 Measurement Results;195
18.6.1;5.1 Comparison OH*Chemiluminescence and Visual Light;195
18.6.2;5.2 CH* and C2* Results;196
18.6.3;5.3 Results for Early Engine Cycles in Transient Load Step;197
18.7;6 Summary and Discussion;199
18.8;Acknowledgements;200
18.9;References;200
19;Spark Control for Ion Current Sensing;201
19.1;Abstract;201
19.2;1 Ion Current Sensing for Combustion Analyses;201
19.3;2 Ion Current Sensing Using Inductive Ignition Systems;205
19.4;3 Spark Control;208
19.5;4 Summary;210
19.6;References;210
20;Combustion Processes;211
21;Ignition System Development for High Speed High Load Lean Boosted Engines;212
21.1;Abstract;212
21.2;1 Background;212
21.3;2 Lean Boosting;214
21.4;3 2013 4-Cylinder Concept;215
21.4.1;3.1 Functionality Issues;215
21.4.2;3.2 Ignitability Tradeoffs with Breakdown Voltage;217
21.5;4 Initial 2014 Concept Testing;220
21.5.1;4.1 Impact of Regulation Change on Ignition System;220
21.5.2;4.2 Ignition Coil Emulator Testing: Round 1;220
21.5.3;4.3 Ignition Coil Emulator Testing: Round 2;223
21.5.4;4.4 Further Plug Geometry Testing;227
21.5.5;4.5 Effect of Spark Plug Penetration;229
21.6;5 Endoscopic Flame Kernel Measurements;230
21.7;6 Multispark Testing;232
21.8;7 Importance of Early Burn Duration;234
21.9;8 Conclusions;236
21.10;References;237
22;New Ignition Systems 2;238
23;Effects of Microwave-Enhanced Plasma on Laser Ignition;239
23.1;Abstract;239
23.2;1 Introduction;239
23.3;2 Experimental Setup and Method;240
23.4;3 Results and Discussion;242
23.4.1;3.1 Effect of Microwave-Enhancement on the Laser Ignition;242
23.4.2;3.2 Effect of the Total Duration Time of Microwave Enhancement and the Effect of Duty Ratio on the Microwave-Enhanced Laser Ignition;244
23.4.3;3.3 Effect of the Frequency of Pulsed Microwave on the Minimum Pulse Energy Required for Ignition;244
23.5;4 Conclusion;246
23.6;References;246
24;Pulse Train Ignition with Passively Q-Switched Laser Spark Plugs Under Engine-like Conditions;248
24.1;Abstract;248
24.2;1 Introduction;248
24.3;2 Influence of Laser Pulse Profile on Flame Kernel Formation;249
24.4;3 Influence of Pulse Trains on Flame Kernel Formation;250
24.5;4 Ignition and Combustion Process After Pulse Train Ignition;251
24.6;5 Conclusion;252
24.7;References;252
25;Advanced Plasma Ignition (API): A Simple Corona and Spark Ignition System;254
25.1;1 Introduction;254
25.2;2 General Description;255
25.2.1;2.1 Compatibility;255
25.2.2;2.2 Safety;256
25.3;3 Technical Description;256
25.3.1;3.1 Plasma Plug;256
25.3.2;3.2 Oscillator;257
25.3.3;3.3 Current Supply;257
25.3.4;3.4 High-Voltage Transformer;258
25.4;4 Conclusion;258
25.5;References;258
26;Alternative Ignition Systems;259
27;Analytical and Experimental Optimization of the Advanced Corona Ignition System;260
27.1;Abstract;260
27.2;1 Introduction;260
27.3;2 Energy Audit;262
27.3.1;2.1 Effect of Operating Frequency;262
27.3.2;2.2 Analysis of Power Distribution;265
27.3.3;2.3 Conclusions;269
27.4;3 Igniter Optimization;269
27.4.1;3.1 Electrical Design;270
27.4.2;3.2 Thermal Design;276
27.4.3;3.3 Conclusions;278
27.5;4 Combustion Chamber Optimization;279
27.5.1;4.1 Simplified Treatment in FEA;279
27.5.2;4.2 Conclusions;283
27.6;5 Summary;284
27.7;References;285
28;Comparative Optical and Thermodynamic Investigations of High Frequency Corona- and Spark-Ignition on a CV Natural Gas Research Engine Operated with Charge Dilution by Exhaust Gas Recirculation;286
28.1;Abstract;286
28.2;1 Introduction and Motivation;286
28.3;2 Basics;287
28.3.1;2.1 Ignition Systems;287
28.3.2;2.2 Initial Phase of Combustion;288
28.3.3;2.3 Exhaust-Gas Recirculation;289
28.4;3 Experimental Set-up;290
28.4.1;3.1 Research Engine;290
28.4.2;3.2 Measurement Instrumentation;291
28.4.3;3.3 Specifications of the Ignition Systems;291
28.5;4 Test Procedure;292
28.5.1;4.1 Operating Points;292
28.5.2;4.2 Single Cylinder Optical Engine Operating Mode;293
28.5.3;4.3 Data Analysis;294
28.6;5 Experimental Results;295
28.6.1;5.1 Phenomenology of Ignition and Flame Propagation;295
28.6.2;5.2 Charge Dilution with EGR;297
28.6.3;5.3 Ignition Energy Variation;302
28.7;6 Summary;304
28.8;Acknowledgement;306
28.9;References;306
29;Potential of Advanced Corona Ignition System (ACIS) for Future Engine Applications;308
29.1;Abstract;308
29.2;1 Introduction;308
29.3;2 Optical Engine Specifications;309
29.4;3 Operating Conditions and Diagnostics;311
29.5;4 Optical Engine Results and Discussion;311
29.5.1;4.1 Stoichiometric Mixture, a/F = 15.0, Same Spark Advance;311
29.5.2;4.2 Stoichiometric Mixture, Matched CA50;313
29.5.3;4.3 Stoichiometric Mixture, 20 % N2 Dilution;313
29.5.4;4.4 Lean Limit, a/F = 25.8;315
29.5.5;4.5 Lean Limit, a/F = 25.2, Similar COVIMEP;317
29.5.6;4.6 Rich Condition, a/F = 13.1;318
29.6;5 Multi-cylinder Engine Specifications;319
29.7;6 Test Conditions;319
29.8;7 Multi-cylinder Engine Results;320
29.8.1;7.1 Part Load Combustion Performance;320
29.8.2;7.2 Light Load Combustion Performance;322
29.9;8 Summary;323
29.10;Acknowledgements;324
29.11;References;324



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.