E-Book, Englisch, 324 Seiten, eBook
Günther / Sens Ignition Systems for Gasoline Engines
1. Auflage 2017
ISBN: 978-3-319-45504-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
3rd International Conference, November 3-4, 2016, Berlin, Germany
E-Book, Englisch, 324 Seiten, eBook
ISBN: 978-3-319-45504-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;Requirements for Ignition Systems;8
3;Challenges to the Ignition System of Future Gasoline Engines – An Application Oriented Systems Comparison;9
3.1;Abstract;9
3.2;1 Introduction;9
3.3;2 Challenges to Ignitions Systems Within the Engine Map;10
3.4;3 Test Setup and Procedure;13
3.4.1;3.1 Engines for Thermodynamic Testing;13
3.4.2;3.2 Ignition Systems;13
3.5;4 Results;15
3.5.1;4.1 Potentials in Part Load;15
3.5.2;4.2 Potentials in Upper Part Load;21
3.5.3;4.3 Potentials at High Load;22
3.5.4;4.4 Transient Behavior;26
3.5.5;4.5 Functional Integration Aspects;28
3.6;5 Conclusion;30
3.7;Acknowledgements;31
3.8;References;31
4;Extension of Operating Window for Modern Combustion Systems by High Performance Ignition;32
4.1;Abstract;32
4.2;1 Introduction;32
4.3;2 Requirements on Ignition System for Modern Combustion Concepts;35
4.3.1;2.1 Requirements for Efficient Combustion;35
4.3.2;2.2 Derived Component Requirements;39
4.3.3;2.3 Requirements Development vs. Ignition Solutions;41
4.4;3 CEI Working Principle and Sample Status;42
4.4.1;3.1 CEI Working Principle;42
4.4.2;3.2 CEI Sample Status and Performance Measurement Results;45
4.5;4 Engine Results;47
4.5.1;4.1 Potential Study for EGR Combustion Concepts;48
4.5.2;4.2 Potential Study for Lean Combustion Concepts;53
4.6;5 Summary;55
4.7;References;56
5;Demonstration of Improved Dilution Tolerance Using a Production-Intent Compact Nanosecond Pulse Ignition System;58
5.1;Abstract;58
5.2;1 Introduction;59
5.2.1;1.1 Technical Approach;59
5.3;2 Ignition System;63
5.3.1;2.1 Ignition Module;64
5.3.2;2.2 Measurement;64
5.4;3 Experimental Setup;64
5.5;4 Results;65
5.6;5 Discussion;68
5.7;6 Conclusion;69
5.8;Acknowledgements;70
5.9;References;70
6;Operating Conditions/Flammability;72
7;Study of Ignitability in Strong Flow Field;73
7.1;Abstract;73
7.2;1 Introduction;73
7.3;2 Direction of the Study;75
7.4;3 Analysis of Discharge Channel Behavior and Initial Flame Propagation in Strong Flow Fields;75
7.4.1;3.1 Effect of Strong Flow Fields on Ignitability;75
7.4.2;3.2 Analysis of Misfire Mechanism;77
7.5;4 Effect of Discharge Specifications on Discharge Channel Behavior and Initial Flame Propagation;81
7.5.1;4.1 Effect of Discharge Current and Duration;81
7.5.2;4.2 Optimizing Discharge Specifications;85
7.6;5 Conclusion;86
7.7;Acknowledgment;87
7.8;References;87
8;Simulation of Ignition;89
9;Simulating Extreme Lean Gasoline Combustion – Flow Effects on Ignition;90
9.1;Abstract;90
9.2;1 Introduction;90
9.3;2 Challenges of Lean Burn Combustion;91
9.4;3 Experimental Study on Lean Burn Combustion;93
9.4.1;3.1 Test Bench Setup and Instrumentation;93
9.4.2;3.2 Thermodynamic Engine Testing;95
9.5;4 Lean Mixtures Ignition and Combustion Model;96
9.6;5 Extreme Lean Concept Study;100
9.6.1;5.1 Charge Motion Design;100
9.6.2;5.2 Predictive 1D-Model;102
9.6.3;5.3 Extreme Lean Concept Study;103
9.7;6 Conclusion and Outlook;106
9.8;References;107
10;New Ignition Systems 1;109
11;High Energy Multipole Distribution Spark Ignition System;110
11.1;Abstract;110
11.2;1 Introduction;110
11.3;2 Experimental Setups;113
11.3.1;2.1 Three-pole Spark Plug and Ignition System Configurations;113
11.3.2;2.2 Constant Volume Combustion Vessels;115
11.3.3;2.3 Single-Cylinder Engine Dynamometer Test;117
11.4;3 Results and Discussions;118
11.4.1;3.1 Evaluation on the Constant Volume Combustion Vessels;118
11.4.2;3.2 Evaluation on the Single Cylinder Engine;123
11.5;4 Future Works;129
11.6;5 Conclusions;129
11.7;Acknowledgements;130
11.8;References;130
12;Development of Homogeneous Charged Multi-point Ignition Engine;132
12.1;Abstract;132
12.2;1 Introduction;132
12.3;2 System Configuration of Multi-point Ignition;133
12.4;3 Realization of Fast Combustion by Multi-point Ignition;134
12.5;4 Performance Evaluation of a Multi-point Ignition Engine;135
12.5.1;4.1 Retardation of Ignition Timing;135
12.5.2;4.2 Realization of Lean Combustion;136
12.5.3;4.3 Realization of High Compression Ratio by a Multi-point Ignition;137
12.6;5 Consideration of the Effect of Thermal Efficiency Improvement by Multi-point Ignition;137
12.7;6 Conclusion;140
12.8;7 Closing Remark;140
12.9;Reference;140
13;Development of an Ignition Coil Integrated System to Monitor the Spark Plugs Wear;141
13.1;Abstract;141
13.2;1 Introduction;141
13.3;2 Ignition Process;143
13.4;3 Breakdown Voltage Determinant Factors;144
13.4.1;3.1 Paschen Law;145
13.5;4 Microcontroller-Based Ignition Control;146
13.5.1;4.1 Indirect Measurement of Breakdown Voltage;147
13.6;5 Conclusions;151
13.7;References;151
14;Components;153
15;Fatigue Life Simulation and Analysis of an Ignition Coil;154
15.1;Abstract;154
15.2;1 Introduction;154
15.3;2 Ignition Coil;155
15.4;3 Thermal Fatigue and Durability of Primary Wire;156
15.5;4 Assembly Loads and In-Service Thermal Operating Conditions;156
15.6;5 Computer Simulation Modelling and Analysis for Predicting Thermal Fatigue Durability;158
15.6.1;5.1 Simulating Primary Wire Assembly;158
15.6.2;5.2 Simulating in-Service Thermal Cycling of Coil Assembly;159
15.6.3;5.3 Thermal Fatigue Life Evaluation of the Primary Wire;161
15.7;6 Lab Test Results and Comparison with Simulation Results;162
15.8;7 Conclusions;163
15.9;Acknowledgments;164
15.10;References;164
16;Visualization of Ignition Processes;165
17;Calorimetry and Atomic Oxygen Laser-Induced Fluorescence of Pulsed Nanosecond Discharges at Above-Atmospheric Pressures;166
17.1;Abstract;166
17.2;1 Introduction;166
17.3;2 Experiment Description;169
17.3.1;2.1 Pressure-Rise Calorimetry;169
17.3.2;2.2 O-Atom Two-Photon Laser Induced Fluorescence;171
17.4;3 Results and Discussion;172
17.4.1;3.1 Pressure-Rise Calorimetry;172
17.4.2;3.2 LTP Two-Photon Laser Induced Fluorescence;178
17.4.3;3.3 Discussion;180
17.5;4 Conclusions;182
17.6;Acknowledgements;183
17.7;References;184
18;Comparing Visualization of Inflammation at Transient Load Steps Comparing Ignition Systems;187
18.1;Abstract;187
18.2;1 Introduction;187
18.3;2 Experimental Setup;188
18.3.1;2.1 Requirements for Engine Testing in Transient Operation;188
18.3.2;2.2 Engine in the Loop as Test Bed with Synchronized Measurements;188
18.4;3 Investigated Transient Processes;190
18.5;4 Camera Measurements of Chemiluminescence as Tool for Flame Kernel Investigation;191
18.6;5 Measurement Results;195
18.6.1;5.1 Comparison OH*Chemiluminescence and Visual Light;195
18.6.2;5.2 CH* and C2* Results;196
18.6.3;5.3 Results for Early Engine Cycles in Transient Load Step;197
18.7;6 Summary and Discussion;199
18.8;Acknowledgements;200
18.9;References;200
19;Spark Control for Ion Current Sensing;201
19.1;Abstract;201
19.2;1 Ion Current Sensing for Combustion Analyses;201
19.3;2 Ion Current Sensing Using Inductive Ignition Systems;205
19.4;3 Spark Control;208
19.5;4 Summary;210
19.6;References;210
20;Combustion Processes;211
21;Ignition System Development for High Speed High Load Lean Boosted Engines;212
21.1;Abstract;212
21.2;1 Background;212
21.3;2 Lean Boosting;214
21.4;3 2013 4-Cylinder Concept;215
21.4.1;3.1 Functionality Issues;215
21.4.2;3.2 Ignitability Tradeoffs with Breakdown Voltage;217
21.5;4 Initial 2014 Concept Testing;220
21.5.1;4.1 Impact of Regulation Change on Ignition System;220
21.5.2;4.2 Ignition Coil Emulator Testing: Round 1;220
21.5.3;4.3 Ignition Coil Emulator Testing: Round 2;223
21.5.4;4.4 Further Plug Geometry Testing;227
21.5.5;4.5 Effect of Spark Plug Penetration;229
21.6;5 Endoscopic Flame Kernel Measurements;230
21.7;6 Multispark Testing;232
21.8;7 Importance of Early Burn Duration;234
21.9;8 Conclusions;236
21.10;References;237
22;New Ignition Systems 2;238
23;Effects of Microwave-Enhanced Plasma on Laser Ignition;239
23.1;Abstract;239
23.2;1 Introduction;239
23.3;2 Experimental Setup and Method;240
23.4;3 Results and Discussion;242
23.4.1;3.1 Effect of Microwave-Enhancement on the Laser Ignition;242
23.4.2;3.2 Effect of the Total Duration Time of Microwave Enhancement and the Effect of Duty Ratio on the Microwave-Enhanced Laser Ignition;244
23.4.3;3.3 Effect of the Frequency of Pulsed Microwave on the Minimum Pulse Energy Required for Ignition;244
23.5;4 Conclusion;246
23.6;References;246
24;Pulse Train Ignition with Passively Q-Switched Laser Spark Plugs Under Engine-like Conditions;248
24.1;Abstract;248
24.2;1 Introduction;248
24.3;2 Influence of Laser Pulse Profile on Flame Kernel Formation;249
24.4;3 Influence of Pulse Trains on Flame Kernel Formation;250
24.5;4 Ignition and Combustion Process After Pulse Train Ignition;251
24.6;5 Conclusion;252
24.7;References;252
25;Advanced Plasma Ignition (API): A Simple Corona and Spark Ignition System;254
25.1;1 Introduction;254
25.2;2 General Description;255
25.2.1;2.1 Compatibility;255
25.2.2;2.2 Safety;256
25.3;3 Technical Description;256
25.3.1;3.1 Plasma Plug;256
25.3.2;3.2 Oscillator;257
25.3.3;3.3 Current Supply;257
25.3.4;3.4 High-Voltage Transformer;258
25.4;4 Conclusion;258
25.5;References;258
26;Alternative Ignition Systems;259
27;Analytical and Experimental Optimization of the Advanced Corona Ignition System;260
27.1;Abstract;260
27.2;1 Introduction;260
27.3;2 Energy Audit;262
27.3.1;2.1 Effect of Operating Frequency;262
27.3.2;2.2 Analysis of Power Distribution;265
27.3.3;2.3 Conclusions;269
27.4;3 Igniter Optimization;269
27.4.1;3.1 Electrical Design;270
27.4.2;3.2 Thermal Design;276
27.4.3;3.3 Conclusions;278
27.5;4 Combustion Chamber Optimization;279
27.5.1;4.1 Simplified Treatment in FEA;279
27.5.2;4.2 Conclusions;283
27.6;5 Summary;284
27.7;References;285
28;Comparative Optical and Thermodynamic Investigations of High Frequency Corona- and Spark-Ignition on a CV Natural Gas Research Engine Operated with Charge Dilution by Exhaust Gas Recirculation;286
28.1;Abstract;286
28.2;1 Introduction and Motivation;286
28.3;2 Basics;287
28.3.1;2.1 Ignition Systems;287
28.3.2;2.2 Initial Phase of Combustion;288
28.3.3;2.3 Exhaust-Gas Recirculation;289
28.4;3 Experimental Set-up;290
28.4.1;3.1 Research Engine;290
28.4.2;3.2 Measurement Instrumentation;291
28.4.3;3.3 Specifications of the Ignition Systems;291
28.5;4 Test Procedure;292
28.5.1;4.1 Operating Points;292
28.5.2;4.2 Single Cylinder Optical Engine Operating Mode;293
28.5.3;4.3 Data Analysis;294
28.6;5 Experimental Results;295
28.6.1;5.1 Phenomenology of Ignition and Flame Propagation;295
28.6.2;5.2 Charge Dilution with EGR;297
28.6.3;5.3 Ignition Energy Variation;302
28.7;6 Summary;304
28.8;Acknowledgement;306
28.9;References;306
29;Potential of Advanced Corona Ignition System (ACIS) for Future Engine Applications;308
29.1;Abstract;308
29.2;1 Introduction;308
29.3;2 Optical Engine Specifications;309
29.4;3 Operating Conditions and Diagnostics;311
29.5;4 Optical Engine Results and Discussion;311
29.5.1;4.1 Stoichiometric Mixture, a/F = 15.0, Same Spark Advance;311
29.5.2;4.2 Stoichiometric Mixture, Matched CA50;313
29.5.3;4.3 Stoichiometric Mixture, 20 % N2 Dilution;313
29.5.4;4.4 Lean Limit, a/F = 25.8;315
29.5.5;4.5 Lean Limit, a/F = 25.2, Similar COVIMEP;317
29.5.6;4.6 Rich Condition, a/F = 13.1;318
29.6;5 Multi-cylinder Engine Specifications;319
29.7;6 Test Conditions;319
29.8;7 Multi-cylinder Engine Results;320
29.8.1;7.1 Part Load Combustion Performance;320
29.8.2;7.2 Light Load Combustion Performance;322
29.9;8 Summary;323
29.10;Acknowledgements;324
29.11;References;324