E-Book, Englisch, 701 Seiten, eBook
Grohs / Holler / Weinmann Handbook of Variational Methods for Nonlinear Geometric Data
1. Auflage 2020
ISBN: 978-3-030-31351-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 701 Seiten, eBook
ISBN: 978-3-030-31351-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Geometric Finite Elements.- 2. Non-smooth variational regularization for processing manifold-valued data.- 3. Lifting methods for manifold-valued variational problems.- 4. Geometric subdivision and multiscale transforms.- 5. Variational Methods for Discrete Geometric Functionals.- 6 Variational methods for fluid-structure interactions.- 7. Convex lifting-type methods for curvature regularization.- 8. Assignment Flows.- 9. Geometric methods on low-rank matrix and tensor manifolds.- 10. Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces.- 11. Advances in Geometric Statistics for manifold dimension reduction.- 12. Deep Variational Inference.- 13. Shape Analysis of Functional Data.- 14. Statistical Analysis of Trajectories of Multi-Modality Data.- 15. Geometric Metrics for Topological Representations.- 16. On Geometric Invariants, Learning, and Recognition of Shapes and Forms.- 17. Sub-Riemannian Methods in Shape Analysis.- 18. First order methods for optimization on Riemannian manifolds.- 19. Recent Advances in Stochastic Riemannian Optimization.- 20. Averaging symmetric positive-definite matrices.- 21. Rolling Maps and Nonlinear Data.- 22. Manifold-valued Data in Medical Imaging Applications.- 23. The Riemannian and Affine Geometry of Facial Expression and Action Recognition.- 24. Biomedical Applications of Geometric Functional Data Analysis.