Griffiths / Schiesser | Traveling Wave Analysis of Partial Differential Equations | Buch | 978-0-12-384652-5 | sack.de

Buch, Englisch, 461 Seiten, Format (B × H): 200 mm x 243 mm, Gewicht: 986 g

Griffiths / Schiesser

Traveling Wave Analysis of Partial Differential Equations

Numerical and Analytical Methods with MATLAB and Maple

Buch, Englisch, 461 Seiten, Format (B × H): 200 mm x 243 mm, Gewicht: 986 g

ISBN: 978-0-12-384652-5
Verlag: Elsevier Science


Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods.

This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs.

 The Matlab and Maple software will be available for download from this website shortly.

www.pdecomp.net
Griffiths / Schiesser Traveling Wave Analysis of Partial Differential Equations jetzt bestellen!

Zielgruppe


<p>Scientists, Engineers, Applied Mathematicians, and Economists who use PDE models</p>

Weitere Infos & Material


1. Traveling wave, residual function methods for analytical solutions to PDEs;2. Linear advection equation;3. Linear diusion equation;4. Linear convection diusion reaction equation;5. Diusion equation with nonlinear source terms;6. Burgers-Huxley equation;7. Burgers-Fisher equation;8. Fisher-Kolmogorov equation;9. Fitzhugh-Nagumo equation;10. Fisher-Kolmogorov-Petrovskii-Piskunov equation;11. Kuramoto-Sivashinsky equation;12. Kawahara equation;13. Benjamin-Bona-Mahoney (RLW) equation;14. Extended Bernoulli equation;15. Hyperbolic Liouville equation;16. Sine-Gordon equation;17. Mth order Klein-Gordon equation;18. Boussinesq equation;19. Modied wave equation;20. Appendix 1 - Analytical solution methods for traveling wave problems;


Schiesser, William E
Dr. William E. Schiesser is Emeritus McCann Professor of Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. He holds a PhD from Princeton University and a ScD (hon) from the University of Mons, Belgium. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs), and the development of mathematical models based on ODE/DAE/PDEs. He is the author or coauthor of more than 16 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations, and government agencies.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.