Goldblatt | Orthogonality and Spacetime Geometry | Buch | 978-0-387-96519-2 | sack.de

Buch, Englisch, 194 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g

Reihe: Universitext

Goldblatt

Orthogonality and Spacetime Geometry


Softcover Nachdruck of the original 1. Auflage 1987
ISBN: 978-0-387-96519-2
Verlag: Springer

Buch, Englisch, 194 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g

Reihe: Universitext

ISBN: 978-0-387-96519-2
Verlag: Springer


This book examines the geometrical notion of orthogonality, and shows how to use it as the primitive concept on which to base a metric structure in affine geometry. The subject has a long history, and an extensive literature, but whatever novelty there may be in the study presented here comes from its focus on geometries hav­ ing lines that are self-orthogonal, or even singular (orthogonal to all lines). The most significant examples concern four-dimensional special-relativistic spacetime (Minkowskian geometry), and its var­ ious sub-geometries, and these will be prominent throughout. But the project is intended as an exercise in the foundations of geome­ try that does not presume a knowledge of physics, and so, in order to provide the appropriate intuitive background, an initial chapter has been included that gives a description of the different types of line (timelike, spacelike, lightlike) that occur in spacetime, and the physical meaning of the orthogonality relations that hold between them. The coordinatisation of affine spaces makes use of constructions from projective geometry, including standard results about the ma­ trix represent ability of certain projective transformations (involu­ tions, polarities). I have tried to make the work sufficiently self­ contained that it may be used as the basis for a course at the ad­ vanced undergraduate level, assuming only an elementary knowledge of linear and abstract algebra.

Goldblatt Orthogonality and Spacetime Geometry jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 A Trip On Einstein’s Train.- 2 Planes.- 2.1 Affine Planes and Fields.- 2.2 Metric Vector Spaces.- 2.3 Metric Planes.- 2.4 The Singular Plane.- 2.5 The Artinian Plane.- 2.6 Constants of Orthogonality.- 2.7 The Three Real Metric Planes.- 3 Projective Transformations.- 3.1 Projective Planes.- 3.2 Projectivities and Involutions.- 3.3 Matrix-Induced Projectivities.- 3.4 Projective Collineations.- 3.5 Correlations and Polarities.- 4 Threefolds.- 4.1 Affine Spaces.- 4.2 Metric Affine Spaces.- 4.3 Singular Threefolds.- 4.4 Nonsingular Threefolds.- 5 Fourfolds.- 5.1 Artinian Four-Space.- 5.2 Affine Fourfolds and Projective Three-Space.- 5.3 Nonsingular Fourfolds.- 5.4 The Three Real Fourfolds.- Appendix A Metageometry.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.