Goel / Singh | Engineering Rock Mass Classification | E-Book | sack.de
E-Book

E-Book, Englisch, 384 Seiten

Goel / Singh Engineering Rock Mass Classification

Tunnelling, Foundations and Landslides
1. Auflage 2011
ISBN: 978-0-12-385879-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Tunnelling, Foundations and Landslides

E-Book, Englisch, 384 Seiten

ISBN: 978-0-12-385879-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton's Q and Q' systems, Bieniawski's RMR, Laubscher's MRMR and Hoek's and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design. - Identify the most significant parameters influencing the behaviour of a rock mass - Divide a particular rock mass formulation into groups of similar behaviour, rock mass classes of varying quality - Provide a basis of understanding the characteristics of each rock mass class - Relate the experience of rock conditions at one site to the conditions and experience encountered at others - Derive quantitative data and guidelines for engineering design - Provide common basis for communication between engineers and geologists

Goel / Singh Engineering Rock Mass Classification jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Engineering Rock Mass Classification: Tunneling, Foundations, and Landslides;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;Preface;14
7;Acknowledgments;16
8;Chapter 1: Philosophy of Engineering Classifications;18
8.1;The classification;18
8.2;Philosophy of classification system;19
8.3;Need for engineering geological map;19
8.4;Management of uncertainties;20
8.5;Present-day practice;20
8.6;Scope of the book;21
8.7;References;21
9;Chapter 2: Shear Zone Treatment in Tunnels and Foundations;24
9.1;Shear zone;24
9.2;Treatment for tunnels;24
9.3;Treatment for dam foundations;26
9.4;References;27
10;Chapter 3: Rock Material;30
10.1;Rock material;30
10.2;Homogeneity and inhomogeneity;30
10.3;Classification of rock material;30
10.4;Class I and II brittle rocks;32
10.5;Uniaxial compression;33
10.6;Stability in water;34
10.7;Classification on the basis of slake durability index;35
10.8;References;36
11;Chapter 4: Rock Quality Designation;38
11.1;Rock quality designation;38
11.2;Direct method;38
11.3;Indirect methods;40
11.4;Weighted joint density;41
11.5;Red-flag effect of low RQD;46
11.6;Application of RQD;47
11.7;References;47
12;Chapter 5: Terzaghi's Rock Load Theory;50
12.1;Introduction;50
12.2;Rock classes;50
12.3;Rock load factor;50
12.4;Modified Terzaghi's theory for tunnels and caverns;59
12.5;References;59
13;Chapter 6: Rock Mass Rating;62
13.1;Introduction;62
13.2;Collection of field data;62
13.3;Estimation of RMR;67
13.4;Applications of RMR;69
13.5;Precautions;72
13.6;Rock mass excavability index for TBM;75
13.7;Tunnel alignment;77
13.8;References;78
14;Chapter 7: Tunneling Hazards;80
14.1;Introduction;80
14.2;Tunneling Conditions;82
14.3;Empirical approach for predicting ground conditions;91
14.4;Theoretical/analytical approach;95
14.5;Effect of thickness of weak band on squeezing ground condition;97
14.6;Sudden flooding of tunnels;97
14.7;Chimney formation;97
14.8;Environmental hazards due to toxic or explosive gases and geothermal gradient;100
14.9;Concluding remarks;100
14.10;References;100
15;Chapter 8: Rock Mass Quality Q-System;102
15.1;The Q-system;102
15.2;Joint orientation and the Q-system;110
15.3;Updating the Q-system;110
15.4;Collection of field data;110
15.5;Classification of the rock mass;111
15.6;Estimation of support pressure;113
15.7;Estimation of deformation or closure;118
15.8;Unsupported span;119
15.9;Design of supports;120
15.10;New austrian tunneling method;121
15.11;Norwegian method of tunneling;123
15.12;Rock mass characterization;123
15.13;Drainage measures;129
15.14;Experiences in poor rock conditions;130
15.15;Concluding remarks;130
15.16;References;133
16;Chapter 9: Rock Mass Number;136
16.1;Introduction;136
16.2;Interrelation between Q and RMR;137
16.3;Prediction of ground conditions;140
16.4;Prediction of support pressure;140
16.5;Effect of tunnel size on support pressure;140
16.6;Correlations for estimating tunnel closure;143
16.7;Effect of tunnel depth on support pressure and closure in tunnels;144
16.8;Approach for obtaining ground reaction curve;144
16.9;Coefficient of volumetric expansion of failed rock mass;146
16.10;References;147
17;Chapter 10: Rock Mass Index;150
17.1;Introduction;150
17.2;Selection of parameters used in RMi;150
17.3;Calibration of RMi from known rock mass strength data;151
17.4;Scale effect;154
17.5;Examples (palmstrom, 1995);157
17.6;Applications of RMi;158
17.7;Benefits of using RMi;158
17.8;Limitations of RMi;159
17.9;References;160
18;Chapter 11: Rate of Tunneling;162
18.1;Introduction;162
18.2;Classification of ground/job conditions for rate of tunneling;163
18.3;Classification of management conditions for rate of tunneling;163
18.4;Combined effect of ground and management conditions on rate of tunneling;170
18.5;Tunnel management (Singh, 1993);171
18.6;Poor tender specifications;172
18.7;Contracting practice;173
18.8;Quality management by international tunneling association;173
18.9;References;174
19;Chapter 12: Support System in Caverns;176
19.1;Support pressure;176
19.2;Wall support in caverns;177
19.3;Roof support in caverns;179
19.4;Stress distribution in caverns;180
19.5;Opening of discontinuities in roof due to tensile stress;181
19.6;Rock reinforcement near intersections;181
19.7;Radial displacements;181
19.8;Precautions;181
19.9;References;183
20;Chapter 13: Strength Enhancement of Rock Mass in Tunnels;186
20.1;Causes of strength enhancement;186
20.2;Effect of intermediate principal stress on tangential stress at failure in tunnels;186
20.3;Uniaxial compressive strength of rock mass;189
20.4;Reason for strength enhancement in tunnels and a new failure theory;190
20.5;Critical strain of rock mass;194
20.6;Criterion for squeezing ground condition;195
20.7;Rock burst in brittle rocks;195
20.8;Tensile strength across discontinuous joints;197
20.9;Dynamic strength of rock mass;198
20.10;Residual strength parameters;198
20.11;References;199
21;Chapter 14: Rock Mass Quality for Open Tunnel Boring Machines;202
21.1;Introduction;202
21.2;Q and QTBM;203
21.3;Penetration and advance rates;205
21.4;Cutter wear;206
21.5;Penetration and advance rates versus QTBM;206
21.6;Estimating time for completion;207
21.7;Risk management;207
21.8;References;208
22;Chapter 15: Strength of Discontinuities;210
22.1;Introduction;210
22.2;Joint wall roughness coefficient;210
22.3;Joint wall compressive strength;213
22.4;Joint matching coefficient;215
22.5;Residual angle of friction;215
22.6;Shear strength of joints;217
22.7;Dynamic shear strength of rough rock joints;218
22.8;Theory of shear strength at very high confining stress;219
22.9;Normal and shear stiffnesses of rock joints;220
22.10;References;220
23;Chapter 16: Shear Strength of Rock Masses in Slopes;222
23.1;Mohr-coulomb strength parameters;222
23.2;Non-linear failure envelopes for rock masses;222
23.3;Strength of rock masses in slopes;226
23.4;Back analysis of distressed slopes;227
23.5;References;227
24;Chapter 17: Types of Failures of Rock and Soil Slopes;228
24.1;Introduction;228
24.2;Planar (translational) failure;228
24.3;3D Wedge failure;228
24.4;Circular (rotational) failure;228
24.5;Toppling failure (topples);230
24.6;Raveling slopes (falls);231
24.7;Effect of slope height and groundwater conditions on safe slope angle;231
24.8;A basic landslide classification system;233
24.9;Causative classification;234
24.10;Comprehensive classification system of landslides;234
24.11;Landslide in over-consolidated clays;234
24.12;Rock slope failures;241
24.13;Landslide dams;246
24.14;References;246
25;Chapter 18: Slope Mass Rating;248
25.1;The slope mass rating;248
25.2;Slope stability classes;251
25.3;Support measures;252
25.4;Modified SMR approach;253
25.5;Case study of stability analysis using modified SMR approach;255
25.6;Portal and cut slopes;255
25.7;References;260
26;Chapter 19: Landslide Hazard Zonation;262
26.1;Introduction;262
26.2;Landslide hazard zonation maps-the methodology;263
26.3;A case history (gupta and anbalagan, 1995);268
26.4;Proposition for tea gardens;279
26.5;Geographic information system;279
26.6;Mega-regional landslide zonation;281
26.7;References;281
27;Chapter 20: Allowable Bearing Pressure for Shallow Foundations;284
27.1;Introduction;284
27.2;A classification for net safe bearing pressure;284
27.3;Allowable bearing pressure;286
27.4;Coefficient of elastic uniform compression for machine foundations;290
27.5;Scour depth around bridge piers;290
27.6;Rock parameters to select type of dam;291
27.7;References;296
28;Chapter 21: Method of Excavation;298
28.1;Excavation techniques;298
28.2;Assessing the rippability;298
28.3;Rock mass classification according to ease of ripping;299
28.4;Empirical methods in blasting;301
28.5;References;302
29;Chapter 22: Rock Drillability;304
29.1;Drillability and affecting parameters;304
29.2;Classification for drilling condition;305
29.3;Other approaches;308
29.4;References;309
30;Chapter 23: Permeability and Groutability;310
30.1;Permeability;310
30.2;Permeability of various rock types;310
30.3;Permeability for classifying rock masses;312
30.4;Permeability versus grouting;312
30.5;Determination of permeability;312
30.6;Grouting;313
30.7;References;323
31;Chapter 24: Gouge Material;324
31.1;Gouge;324
31.2;Shear strength of filled discontinuities (silty to clayey gouge);327
31.3;Dynamic strength;328
31.4;References;329
32;Chapter 25: Engineering Properties of Hard Rock Masses;330
32.1;Hard rock masses;330
32.2;Modulus of deformation;330
32.3;UCS;331
32.4;Uniaxial tensile strength;331
32.5;Strength criterion;331
32.6;Support pressure in non-squeezing/non-rock burst conditions (H < 350 Q1/3);332
32.7;Half-tunnels;332
32.8;References;334
33;Chapter 26: Geological Strength Index;336
33.1;Geological strength index;336
33.2;Generalized strength criterion;340
33.3;Mohr-coulomb strength parameters;343
33.4;Modulus of deformation;344
33.5;Rock parameters for intact schistose;346
33.6;Estimation of residual strength of rock masses;346
33.7;Classification of squeezing ground condition;347
33.8;References;350
34;Chapter 27: Evaluation of Critical Rock Parameters;352
34.1;Introduction;352
34.2;Critical parameters;352
34.3;Parameter intensity and dominance;353
34.4;Classification of rock mass;355
34.5;Example for studying parameter dominance in underground excavation for a coal mine with a flat roof;355
34.6;Relative importance of rock parameters in major projects;357
34.7;Interaction between rock parameters;357
34.8;Application in entropy management;361
34.9;References;361
35;Chapter 28: In Situ Stresses;362
35.1;The need for in situ stress measurement;362
35.2;Classification of geological conditions and stress regimes;362
35.3;Variation of in situ stresses with depth;364
35.4;Effects of in situ stress on rock mass properties;366
35.5;Core Discing;366
35.6;References;367
36;Appendix I;368
37;Appendix II;372
38;Index;374



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.