Buch, Englisch, 400 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 766 g
Buch, Englisch, 400 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 766 g
Reihe: Advances in Earthquake Engineering
ISBN: 978-1-4398-3763-4
Verlag: CRC Press
This technical reference covers the pushover analysis of reinforced concrete and steel bridges with confined and unconfined concrete column members of either circular or rectangular cross sections as well as steel members of standard shapes. It provides step-by-step procedures for pushover analysis with various nonlinear member stiffness formulations, including:
- Finite segment–finite string (FSFS)
- Finite segment–moment curvature (FSMC)
- Axial load–moment interaction (PM)
- Constant moment ratio (CMR)
- Plastic hinge length (PHL)
Ranging from the simplest to the most sophisticated, the methods are suitable for engineers with varying levels of experience in nonlinear structural analysis.
The authors also provide a downloadable computer program, INSTRUCT (INelastic STRUCTural Analysis of Reinforced-Concrete and Steel Structures), that allows readers to perform their own pushover analyses. Numerous real-world examples demonstrate the accuracy of analytical prediction by comparing numerical results with full- or large-scale test results. A useful reference for researchers and engineers working in structural engineering, this book also offers an organized collection of nonlinear pushover analysis applications for students.
Zielgruppe
Professionals and academics/researchers in structural and earthquake engineering; graduate students in Earthquake Engineering/Structural Analysis/Bridge Design.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Overview of Seismic Design of Highway Bridges in the United States. Pushover Analysis Applications. Nonlinear Pushover Analysis Procedure. Nonlinear Bending Stiffness Matrix Formulations. Analytical Formulation for Structures. Input Data for INSTRUCT Program. Numerical Examples. Appendix A: Stiffness Matrix Formulation for Bilinear PM Method. Appendix B: Stiffness Matrix Formulation for Finite Segment. Appendix C: Unbalanced Forces of a Finite Segment. Appendix D: Nonlinear Incremental Solution Algorithms. Appendix E: Plastic Curvature Capacities and Neutral Axis Depth in Columns. Appendix F: Elastic and Inelastic Time History Analysis. Appendix G: Elastic and Inelastic Response Spectra. Appendix H: Response Spectrum Analysis of Multiple-dof System. Appendix I: Polynomial Curve Fitting. Appendix J: Plate Element Stiffness Matrix. References. Index.