Georga / Fotiadis / Tigas | Personalized Predictive Modeling in Type 1 Diabetes | Buch | 978-0-12-804831-3 | sack.de

Buch, Englisch, 252 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 540 g

Georga / Fotiadis / Tigas

Personalized Predictive Modeling in Type 1 Diabetes

Buch, Englisch, 252 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 540 g

ISBN: 978-0-12-804831-3
Verlag: Elsevier Science


Personalized Predictive Modeling in Diabetes features state-of-the-art methodologies and algorithmic approaches which have been applied to predictive modeling of glucose concentration, ranging from simple autoregressive models of the CGM time series to multivariate nonlinear regression techniques of machine learning. Developments in the field have been analyzed with respect to: (i) feature set (univariate or multivariate), (ii) regression technique (linear or non-linear), (iii) learning mechanism (batch or sequential), (iv) development and testing procedure and (v) scaling properties. In addition, simulation models of meal-derived glucose absorption and insulin dynamics and kinetics are covered, as an integral part of glucose predictive models.

This book will help engineers and clinicians to: select a regression technique which can capture both linear and non-linear dynamics in glucose metabolism in diabetes, and which exhibits good generalization performance under stationary and non-stationary conditions; ensure the scalability of the optimization algorithm (learning mechanism) with respect to the size of the dataset, provided that multiple days of patient monitoring are needed to obtain a reliable predictive model; select a features set which efficiently represents both spatial and temporal dependencies between the input variables and the glucose concentration; select simulation models of subcutaneous insulin absorption and meal absorption; identify an appropriate validation procedure, and identify realistic performance measures.
Georga / Fotiadis / Tigas Personalized Predictive Modeling in Type 1 Diabetes jetzt bestellen!

Zielgruppe


<p>Bioengineers, Clinicians, graduate and undergraduate students in the field of medicine and biomedical engineering.</p>

Weitere Infos & Material


1. Introduction2. Data-Driven Prediction of Glucose Concentration in Type 1 Diabetes3. Linear Models of Glucose Concentration4. Non-linear Models of Glucose Concentration5. Prediction Models of Hypoglycaemia6. Adaptive Glucose Prediction Models7. Anticipatory Mobile Systems in Diabetes8. Conclusions and Future Trends


Georga, Eleni I
Ph.D. candidate at the Department of Materials Science and Engineering, University of Ioannina, Greece

Tigas, Stelios K
Stelios Tigas is awarded PhD in Endocrinology from the University of Ioannina. Stelios Tigas international experience includes various programs, contributions and participation in different countries for diverse fields of study. Stelios Tigas research interests as an Associate Professor reflect in wide range of publications in various national and international journals

Fotiadis, Dimitrios I
Dimitrios I. Fotiadis received his Diploma degree in chemical engineering from National Technical University of Athens, Athens, Greece, in 1985 and the Ph.D. degree in chemical engineering from the University of Minnesota, Minneapolis, MN, in 1990. He is currently Professor at the Department of Materials Science and Engineering, University of Ioannina, Greece, and affiliated researcher at the Biomedical Research Dept. of the Institute of Molecular Biology and Biotechnology - FORTH. He is the Director of the Unit of Medical Technology and Intelligent Information Systems, Greece. He is the member of the board of Michailideion Cardiology Center. His research interests include modeling of human tissues and organs, intelligent wearable devices for automated diagnosis and processing/analysis of biomedical data.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.