Buch, Englisch, 252 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 540 g
Buch, Englisch, 252 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 540 g
ISBN: 978-0-12-804831-3
Verlag: Elsevier Science
This book will help engineers and clinicians to: select a regression technique which can capture both linear and non-linear dynamics in glucose metabolism in diabetes, and which exhibits good generalization performance under stationary and non-stationary conditions; ensure the scalability of the optimization algorithm (learning mechanism) with respect to the size of the dataset, provided that multiple days of patient monitoring are needed to obtain a reliable predictive model; select a features set which efficiently represents both spatial and temporal dependencies between the input variables and the glucose concentration; select simulation models of subcutaneous insulin absorption and meal absorption; identify an appropriate validation procedure, and identify realistic performance measures.
Zielgruppe
<p>Bioengineers, Clinicians, graduate and undergraduate students in the field of medicine and biomedical engineering.</p>
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Diabetologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
Weitere Infos & Material
1. Introduction2. Data-Driven Prediction of Glucose Concentration in Type 1 Diabetes3. Linear Models of Glucose Concentration4. Non-linear Models of Glucose Concentration5. Prediction Models of Hypoglycaemia6. Adaptive Glucose Prediction Models7. Anticipatory Mobile Systems in Diabetes8. Conclusions and Future Trends