E-Book, Englisch, 163 Seiten, eBook
Learning, Inference and Use Cases
E-Book, Englisch, 163 Seiten, eBook
ISBN: 978-3-030-74042-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- Background.- Hardware-Aware Cost Models.- Hardware-Aware Bayesian Networks for Sensor Front-End Quality Scaling.- Hardware-Aware Probabilistic Circuits.- Run-Time Strategies.- Conclusions.