Buch, Englisch, 719 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1095 g
Reihe: Advanced Studies in Theoretical and Applied Econometrics
Theory and Practice
Buch, Englisch, 719 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1095 g
Reihe: Advanced Studies in Theoretical and Applied Econometrics
ISBN: 978-3-030-31152-0
Verlag: Springer International Publishing
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsprognose
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Makroökonomie
Weitere Infos & Material
Introduction: Sources and Types of Big Data for Macroeconomic Forecasting.- Capturing Dynamic Relationships: Dynamic Factor Models.- Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs.- Large Bayesian Vector Autoregressions.- Volatility Forecasting in a Data Rich Environment.- Neural Networks.- Seeking Parsimony: Penalized Time Series Regression.- Principal Component and Static Factor Analysis.- Subspace Methods.- Variable Selection and Feature Screening.- Dealing with Model Uncertainty: Frequentist Averaging.- Bayesian Model Averaging.- Bootstrap Aggregating and Random Forest.- Boosting.- Density Forecasting.- Forecast Evaluation.- Further Issues: Unit Roots and Cointegration.- Turning Points and Classification.- Robust Methods for High-dimensional Regression and Covariance Matrix Estimation.- Frequency Domain.- Hierarchical Forecasting.