Franke / Kraus | Design Methods of Control Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 600 Seiten, Web PDF

Reihe: IFAC Symposia Series

Franke / Kraus Design Methods of Control Systems

Selected Papers from the IFAC Symposium, Zurich, Switzerland, 4 - 6 September 1991
1. Auflage 2014
ISBN: 978-1-4832-9900-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Papers from the IFAC Symposium, Zurich, Switzerland, 4 - 6 September 1991

E-Book, Englisch, 600 Seiten, Web PDF

Reihe: IFAC Symposia Series

ISBN: 978-1-4832-9900-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



These Proceedings contain a selection of papers presented at the first IFAC Symposium on Design Methods of Control Systems. The volume contains three plenary papers and 97 technical papers, the latter classified under 15 section headings, as listed in the contents.

Franke / Kraus Design Methods of Control Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Design Methods of Control Systems;4
3;Copyright Page;5
4;Table of Contents;10
5;INTRODUCTION;8
6;PART I: PLENARY PAPERS;18
6.1;CHAPTER 1. DESIGN AND IMPLEMENTATION OF DIGITAL AND ADAPTIVE CONTROLLERS;18
6.1.1;1. Introduction;18
6.1.2;2. Control Design;18
6.1.3;3. Impact of CAGE;19
6.1.4;4. Connections to External World;20
6.1.5;5. Numerics;21
6.1.6;6· Operational Issues;22
6.1.7;7. Real Time Programming;23
6.1.8;8· References;23
6.2;CHAPTER 2. EXTREME POINT RESULTS FOR ROBUST STABILITY OF INTERVAL PLANTS: BEYOND FIRST ORDER COMPENSATORS;24
6.2.1;Abstract;24
6.2.2;1. Introduction;24
6.2.3;2. Underlying Convex Direction Problem;25
6.2.4;3. Definition of the AHMC and the Main Result;26
6.2.5;4. Special Cases of the AHMC;26
6.2.6;5. Extreme Point Results for Interval Plants;27
6.2.7;6. Conclusion;28
6.2.8;Appendix A — Proof of Theorem 3.6;29
6.2.9;References;32
6.3;CHAPTER 3. H8-OPTIMIZATION;34
6.3.1;1 INTRODUCTION;34
6.3.2;2 SENSITIVITY;34
6.3.3;3 ROBUSTNESS;35
6.3.4;4 A GENERAL PERTURBATION MODEL;36
6.3.5;5 NUMERATOR-DENOMINATOR PERTURBATIONS;36
6.3.6;6 THE MIXED SENSITIVITY PROBLEM;37
6.3.7;7 EXAMPLE;38
6.3.8;8 THE STANDARD .8-OPTIMAL REGULATION PROBLEM;40
6.3.9;9 FREQUENCY DOMAIN SOLUTION OF THE STANDARD PROBLEM;41
6.3.10;10 STATE SPACE SOLUTION OF THE STANDARD PROBLEM;42
6.3.11;11 CONCLUSIONS;43
6.3.12;References;43
7;PART II: UNEAR CONTROL SYSTEMS DESIGN;46
7.1;CHAPTER 4. A CONTROLLER DESIGN METHOD BASED ON MODEL MATCHING IN THE FREQUENCY DOMAIN;46
7.1.1;INTRODUCTION;46
7.1.2;..DÉ APPROXIMANTS AND MARKOV PARAMETERS;46
7.1.3;THE CONTROLLER DESIGN METHOD;47
7.1.4;NUMERICAL RESULTS;48
7.1.5;CONCLUSIONS;48
7.1.6;ACKNOWLEDGMENTS;49
7.1.7;REFERENCES;49
7.2;CHAPTER 5. ON THE DESIGN OF SERVOMECHANISMS VIA H2 OPTIMIZATION;50
7.2.1;1. INTRODUCTION;50
7.2.2;2. SOLUTION TO THE SERVOMECHANISM PROBLEM;51
7.2.3;3. A QUADRATIC OPTIMAL CONTROL PROBLEM;52
7.2.4;4. PROBLEM SOLUTION;53
7.2.5;5. EXAMPLES;54
7.2.6;REFERENCES;55
7.3;CHAPTER 6. FREQUENCY-SHAPED LQG/LTR DESIGN: APPLICATION TO THE ROBUST STABILIZATION OF AN HELICOPTER1;56
7.3.1;INTRODUCnON;56
7.3.2;FREQUENCY DOMAIN BEHAVIOUR OF THE LQG REGULATOR;56
7.3.3;FREQUENCY-SHAPED LQ DESIGN;57
7.3.4;FREQUENCY-SHAPED LQG/LTR DESIGN;58
7.3.5;APPLICA.ON TO THE ROBUST
STABILIZATION OF AN HELICOPTER;59
7.3.6;CONCLUSION;60
7.3.7;REFERENCES;61
7.4;CHAPTER 7. TOWARDS A COMPLETE FREQUENCY-DOMAIN DESIGN METHODOLOGY;62
7.4.1;ABSTRACT;62
7.4.2;KEYWORDS;62
7.4.3;1. DESIDERATA;62
7.4.4;2. MODEL MATCHING UNDER HARD CONSTRAINTS;63
7.4.5;3. EXAMPLE: EXPLORATION OF THE ATTAINABLE PERFORMANCE;65
7.4.6;4 . CONTROLLER SIMPLIFICATION BY FREQUENCY-WEIGHTED APPROXIMATION;65
7.4.7;5. A UNIFIED VIEW OF THE VARIOUS APPROACHES;66
7.4.8;6 . GENERALIZATION TO THE MULTIVARIABLE CASE;66
7.4.9;7. CONCLUSIONS;67
7.4.10;8. ACKNOWLEDGEMENTS;67
7.4.11;REFERENCES;67
7.5;CHAPTER 8. MODAL SYNTHESIS OF TWO-INPUT SYSTEMS;70
7.5.1;INTRODUCTION;70
7.5.2;GENERAL RESULTS IN THE CASE OF TWO-INPUT SYSTENS;70
7.5.3;CONCLUSIONS;74
7.5.4;REFERENCES;75
7.5.5;APPENDIX;75
7.6;CHAPTER 9. EIGENSTRUCTURE ASSIGNMENT FOR STATE-CONSTRAINED LINEAR CONTINUOUS TIME SYSTEMS;76
7.6.1;INTRODUCTION;76
7.6.2;PROBLEM PRESENTATION AND PRELIMINARY RESULTS;76
7.6.3;STRUCTURAL CONDITIONS FOR POSITIVE INVARIANCE;77
7.6.4;AN EIGENSTRUCTURE ASSIGNMENT ALGORITHM;80
7.6.5;EXAMPLE;80
7.6.6;CONCLUSION;81
7.6.7;REFERENCES;81
7.7;CHAPTER 10. DIRECT SHAPING OF REFERENCE INPUT
RESPONSE FOR .... SYSTEMS VIA
OUTPUT FEEDBACK;82
7.7.1;INTRODUCTION;82
7.7.2;ALGEBRAIC REPRESENTATION OF SYSTEMS;82
7.7.3;DESIGN EXAMPLES;85
7.7.4;CONCLUSIONS;87
7.7.5;REFERENCES;87
7.8;CHAPTER 11. A DESIGN METHOD FOR LOW COMPLEXITY CONTROL LAWS;88
7.8.1;INTRODUCTION;88
7.8.2;LOW COMPLEXITY DESIGN METHODOLOGY;88
7.8.3;APPLICATION EXAMPLES;90
7.8.4;ROBUSTNESS;92
7.8.5;CONCLUSIONS;92
7.8.6;REFERENCES;93
7.9;CHAPTER 12. THE GENERALIZED H2 CONTROL PROBLEM;94
7.9.1;INTRODUCTION;94
7.9.2;THE GENERALIZED H2 CONTROL PROBLEM;95
7.9.3;STATE-FEEDBACK / FULL INFORMATION;96
7.9.4;OUTPUT FEEDBACK;98
7.9.5;CONCLUSIONS;99
7.9.6;REFERENCES;99
7.10;CHAPTER 13. DUAL MODEL MATCHING;100
7.10.1;1. Introduction;100
7.10.2;2. Characteristic Transfer Function Matrices and Their Properties;100
7.10.3;3. General Description of Control Systems and Fundamental Equations;102
7.10.4;4. Realizable Dual Models;103
7.10.5;5. Design Based on Dual Model Matching;103
7.10.6;6. Example;104
7.10.7;7. The Features of the Design Based on Dual Model Matching;105
7.10.8;8. Conclusion;105
7.10.9;Acknowledgment;105
7.10.10;References;105
7.11;CHAPTER 14. A METHOD FOR TRANSFORMING TIME-VARIABLE MODELS INTO A CONSTANT-COEFFICIENT FORM;106
7.11.1;1 Introduction;106
7.11.2;2 The transformation;107
7.11.3;3 Control design;109
7.11.4;4 Conclusion;111
7.11.5;References;111
8;PART III: CONTROL OF DISCRETE-TIME SYSTEMS;112
8.1;CHAPTER 15. POLYHEDRAL SET CONSTRAINED CONTROL FOR DISCRETE-TIME SYSTEMS WITH UNKNOWN ADDITIVE DISTURBANCES;112
8.1.1;INTRODUCTION;112
8.1.2;PROBLEM STATEMENT AND NOTATIONS;112
8.1.3;THE MAXIMAL U-D INVARIANT SET;113
8.1.4;PROJECTION AND INTERSECTION OF POLYHEDRAL SETS.;114
8.1.5;ON-LINE CONTROL COMPUTATION;116
8.1.6;NUMERICAL EXAMPLE;116
8.1.7;CONCLUSIONS;117
8.1.8;REFERENCES;117
8.2;CHAPTER 16. A DISCRETE VERSION OF ZAKIAN'S METHOD OF INEQUALITIES;118
8.2.1;INTRODUCTION;118
8.2.2;ZAKIAN'S METHOD OF INEQUALITIES;118
8.2.3;ALGORITHMS OF THE DISCRETE VERSION OF THE METHOD OF INEQUALITIES;118
8.2.4;EXAMPLE;119
8.2.5;CONCLUSIONS;120
8.2.6;REFERENCES;120
8.3;CHAPTER 17. MULTIRATE CONTROL ALGORITHMS FOR TIME-VARIABLE SAMPLING PERIODS;122
8.3.1;1. Introduction;122
8.3.2;2. Numerical Integration;123
8.3.3;3. Sampling the Controller Output;125
8.3.4;4. Conclusions;126
8.3.5;References;127
8.4;CHAPTER 18. COMPARISON OF DIGITAL PD AND FUZZY CONTROL THEORY ON A HYDRAULIC SERVOSYSTEM;128
8.4.1;INTRODUCTION;128
8.4.2;EXPERIMENTAL SYSTEM;128
8.4.3;FUZZY CONTROL;129
8.4.4;REFERENCES;131
8.5;CHAPTER 19. DESIGN OF MULTIVARIABLE CONTROL SYSTEMS FOR LINEAR PERIODIC PROCESSES(*);132
8.5.1;1. INTRODUCTION;132
8.5.2;2. NOTATIONS AND PROBLEM STATEMENT;132
8.5.3;3. MAIN RESULT;134
8.5.4;4. CONCLUDING REMARKS;136
8.5.5;REFERENCES;136
8.5.6;APPENDIX: T H E CLASSES OF DISTURBANCE FUNCTIONS AND REFERENCE SIGNALS;137
8.6;CHAPTER 20. THE TURN OVER DESIGN METHOD FOR
THE d DIFFERENCE EXPRESSION SYSTEMS;138
8.6.1;INTRODUCTION;138
8.6.2;PROBLEM FORMULATION;138
8.6.3;CONTINUOUS TYPE TURN OVER DESIGN METHOD;138
8.6.4;TURN OVER RELATION IN d DIFFERENCE EXPRESSION SYSTEM;139
8.6.5;DESIGN METHOD USING
d DIFFERENCE
TYPE TURN OVER RELATION;140
8.6.6;NUMERICAL EXAMPLE;141
8.6.7;CONCLUSION;143
8.6.8;REFERENCES;143
9;PART IV: ROBVST CONTROL;144
9.1;CHAPTER 21. DESIGN BY SEARCH;144
9.1.1;INTRODUCTION;144
9.1.2;THE DLR STEERING BALL;144
9.1.3;PLANT MODEL AND INITIAL COMPENSATOR;145
9.1.4;DISPLAY 1: STABILITY REGIONS IN THE PLANT PARAMETER SPACE;146
9.1.5;DISPLAY 2: STABILITY REGIONS IN A PLANE OF TWO ADDITIONAL COMPENSATOR PARAMETERS;146
9.1.6;DISPLAY 3: NYQUIST VALUE SETS AND STABILITY MARGINS;147
9.1.7;CONCLUSIONS;149
9.1.8;References;149
9.2;CHAPTER 22. COMPUTATION OF THE MINIMUM STABILITY DEGREE OF PARAMETER-DEPENDENT LINEAR SYSTEMS BY A BRANCH AND BOUND ALGORITHM*;150
9.2.1;Introduction;150
9.2.2;The Branch and Bound Algorithm;151
9.2.3;Computation of MSD;152
9.2.4;A Simple Example;154
9.2.5;Conclusions;154
9.2.6;References;154
9.3;CHAPTER 23. STRUCTURED STABILITY MARGIN AND THE FINITE ARGUMENT PRINCIPLE;156
9.3.1;References;154
9.3.2;1. Introduction;156
9.3.3;2. The Structured Stability Margin;157
9.3.4;3. Calculation of Stability Margin;158
9.3.5;4. Example;160
9.3.6;5. Conclusions;161
9.4;CHAPTER 24. ROBUST DISTURBANCE DECOUPLING PROBLEM FOR PARAMETER DEPENDENT FAMILIES OF LINEAR SYSTEMS;162
9.4.1;INTRODUCTION;162
9.4.2;PRELIMINARIES AND STATEMENT OF THE PROBLEM;163
9.4.3;MAIN RESULT;164
9.4.4;APPENDIX;165
9.4.5;REFERENCES;165
9.5;CHAPTER 25. ROBUST D-STABILITY IN FREQUENCY DOMAIN WITH KHARITONOV-LIKE PROPERTIES;166
9.5.1;INTRODUCTION;166
9.5.2;PROBLEM FORMULATON;166
9.5.3;Dt-STABILITY OF A TOLYNOMIAL;166
9.5.4;Df - STABILITY OF A FAMILY OF POLYNOMLALS;169
9.5.5;CONCLUSION;171
9.5.6;REFERENCES;171
9.6;CHAPTER 26. INTERVAL IDENTIFICATION AND ROBUST CONTROL DESIGN: A NEW PERSPECTIVE;172
9.6.1;I. INTRODUCTION;172
9.6.2;II. INTERVAL IDENTIFICATION;172
9.6.3;III. Robust Stabilization Problem;174
9.6.4;IV. Interval Pole Assignment;174
9.6.5;V. INTERVAL STABILIZATION;175
9.6.6;VI. CONCLUSION;177
9.6.7;REFERENCES;177
9.7;CHAPTER 27. CONTROLLER DESIGN TO ACHIEVE COVARIANCE CONSTRAINTS;178
9.7.1;1. INTRODUCnON;178
9.7.2;2. DEFINITION AND SOLUTIOS
OF THE BOCC PROBLEM;179
9.7.3;3. COMPUTATONAL ALGORITHM FOR THE BOCC PROBLEM;180
9.7.4;4. EXAMPLE;181
9.7.5;5. CONCLUSION;182
9.7.6;REFERENCES;182
9.8;CHAPTER 28. NORM BASED ROBUST DYNAMIC FEEDBACK CONTROL OF CONSTRAINED SYSTEMS;184
9.8.1;I. Introduction;184
9.8.2;II. Problem Formulation;184
9.8.3;III. Robust Constrained Stability Analysis;185
9.8.4;IV. Linear Robust Constrained Control Synthesis;186
9.8.5;V. Conclusions;189
9.8.6;VI. Acknowledgements;189
9.8.7;References;189
9.9;CHAPTER 29. DESIGN OF OPTIMALLY ROBUST CONTROLLERS WITH FEW DEGREES OF FREEDOM;190
9.9.1;1. INTRODUCTION;190
9.9.2;2. PRELIMINARIES AND PROBLEM FORMULATION;191
9.9.3;3. REGULARITY PROPERTIES OF T H E STABILITY MARGIN FOR FAMILIES OF PLANTS WITH INTERVAL AND LINEARLY STRUCURED PERTURBATIONS;192
9.9.4;4. OPTIMALLY ROBUST CONTROLLER WITH ONE OR TWO DEGREES OF FREEDOM;192
9.9.5;5. NUMERICAL EXAMPLE;194
9.9.6;6. CONCLUSIONS;194
9.9.7;ACKNOWLEDGEMENTS;195
9.9.8;REFERENCES;195
9.10;CHAPTER 30. ROBUST CONTROL DESIGN FOR LINEAR SYSTEMS WITH UNCERTAIN PARAMETERS;196
9.10.1;l.INTRODUCTION;196
9.10.2;2.PROBLEM FORMULATION;196
9.10.3;3. ROBUSTNESS MEASURE FUNCTION;198
9.10.4;4. ROBUST CONTROLLER DESIGN;199
9.10.5;5. NUMERICAL EXAMPLE;200
9.10.6;6. CONCLUSIONS;201
9.10.7;REFERENCES;201
9.11;CHAPTER 31. A ROBUST CONTROL OF FUEL INJECTION SERVO SYSTEM;202
9.11.1;INTRODUCTION;202
9.11.2;IDENTIFICATION;203
9.11.3;OUTLINE OF RMM;203
9.11.4;RMM FOR NON-MINIMUMPHASE PLANT;204
9.11.5;APPLICATION OF RMM TO FUEL INJECTION PUMP;205
9.11.6;ACKNOWLEDGEMENTS;206
9.11.7;EXPERIMENT RESULTS;206
9.11.8;CONCLUSION;206
9.11.9;REFERENCES;206
9.12;CHAPTER 32. A HYPERSTABILITY/MULTIOBJECTIVE OPTIMIZATION APPROACH FOR ACTIVE FLEXIBLE STRUCTURES;208
9.12.1;Introduction;208
9.12.2;Hyperstabillty Theory;208
9.12.3;Hyperstability Theory Combined with Multiobjective Optimization;209
9.12.4;Parametrization for an (asymptotic) hyperstable controller;210
9.12.5;Example of a first order SISO controller;210
9.12.6;Multiobjective Optimization;210
9.12.7;Control of flexible structures with colocated position - and rate sensors;210
9.12.8;Example: DLR - Plate Experiment;211
9.12.9;Conclusions;213
9.12.10;Acknowledgment;213
9.12.11;References;213
10;PART V: .8-OPTIMIZATION;214
10.1;CHAPTER 33. ROBUST CONTROL OF A FLEXIBLE WIND TURBINE BASED ON COPRIME FACTORIZATIONS;214
10.1.1;1 Introduction;214
10.1.2;2 Wind turbine model;214
10.1.3;3 Control Design Method;215
10.1.4;4 Control of the turbine;217
10.1.5;5 Conclusions;218
10.1.6;References;218
10.2;CHAPTER 34. ROBUST OBSERVER DESIGN FOR DYNAMICAL SYSTEMS UNDER UNKNOWN DISTURBANCES;220
10.2.1;INTRODUCTION AND PROBLEM FORMULATION;220
10.2.2;NOTATION AND PRELIMINARIES;220
10.2.3;PARAMETRIZATION OF OBSERVERS AND ESTIMATION ERROR BEHAVIOUR;221
10.2.4;AN ALGEBRAIC APPROACH TO H8 OPTIMIZATION;222
10.2.5;CONCLUSIONS;225
10.2.6;REFERENCES;225
10.3;CHAPTER 35. H8 ESTIMATION FOR CONTINUOUS-TIME LINEAR UNCERTAIN SYSTEMS1;226
10.3.1;1. INTRODUCTION;226
10.3.2;2. PROBLEM FORMULATION;226
10.3.3;3. SOLU.ON VIA ............ APPROACH;227
10.3.4;4. SOLUTION VIA RICCATI EQUATION APPROACH;229
10.3.5;5. CONCLUSION;230
10.3.6;6. REFERENCES;230
10.4;CHAPTER 36. QUADRATIC STABILIZABILITY OF LINEAR UNCERTAIN SYSTEMS WITH PRESCRIBED H8 NORM BOUNDS1;232
10.4.1;INTRODUCTION;232
10.4.2;PRELIMINARIES;232
10.4.3;PROBLEM FORMULATION;233
10.4.4;MAIN RESULT;234
10.4.5;EXAMPLES;235
10.4.6;CONCLUSIONS;236
10.4.7;REFERENCES;236
10.5;CHAPTER 37. COAL- FIRED POWER PLANT CONTROLLER DESIGN USING H-INFINITY OPTIMIZATION;238
10.5.1;1 Introduction;238
10.5.2;2 Plant and design objectives;238
10.5.3;3 Cost function and weights;239
10.5.4;4 Redesign and model reduction;239
10.5.5;5 Robust performance;240
10.5.6;6 CAD packages;240
10.5.7;7 Conclusion;240
10.5.8;8 Acknowledgements;241
10.5.9;References;241
10.6;CHAPTER 38. PARAMETERIZATIONS OF H8 CONTROLLERS FOR NON-STANDARD PLANTS;244
10.6.1;1. INTRODUCTION;244
10.6.2;2. TWO - BLOCKPROBLEM;245
10.6.3;3. NON - STANDARD CASE (I);245
10.6.4;4. NON-STANDARD CASE (II);246
10.6.5;5. STATE FEEDBACK CASE;248
10.6.6;6 CONCLUSION;249
10.6.7;REFERENCES;249
10.7;CHAPTER 39. H8-OPTIMAL ROBUST ASYMPTOTIC REGULATION WITH NICE STABILITY REGION;250
10.7.1;1. INTRODUCTION;250
10.7.2;2. PROBLEM FORMULATION;250
10.7.3;3. H8 ROBUST STABILIZATION;251
10.7.4;4. BILINEAR TRANSFORMATION;252
10.7.5;5. OPTIMAL ROBUST REGULATION;254
10.7.6;6. CONCLUSIONS;255
10.7.7;REFERENCES;255
10.8;CHAPTER 40. DESIGN OF RELIABLE CONTROL SYSTEMS WITH GUARANTEED DISTURBANCE REJECTION PERFORMANCE;256
10.8.1;Introduction;256
10.8.2;An Alternative Actuator-Outage Mode;259
10.8.3;Example;261
10.8.4;Conclusions;261
10.8.5;References;261
10.9;CHAPTER 41. FIXED ORDER H2/H8 CONTROL OF UNCERTAIN SYSTEMS;262
10.9.1;INTRODUCTION;262
10.9.2;NORMS AND NOTATIONS;263
10.9.3;NECESSARY CONDITIONS FOR;263
10.9.4;THE FLEXIBLE MECHANISM;265
10.9.5;ROBUST CONTROL SYSTEM DESIGN;266
10.9.6;IMPLEMENTATION RESULTS;266
10.9.7;CONCLUSIONS;266
10.9.8;REFERENCES;266
10.10;CHAPTER 42. ROBUST OUTPUT REGULATION USING REDUCED-ORDER CONTROLLERS;268
10.10.1;I Introduction;268
10.10.2;II Preliminaries;268
10.10.3;Ill The Main Results;270
10.10.4;IV Conclusion;272
10.10.5;Reference;273
11;PART VI: ADAPTIVE CONTROL;274
11.1;CHAPTER 43. ON REDUCED ORDER MODEL REFERENCE ADAPTIVE CONTROL;274
11.1.1;INTRODUCnON;274
11.1.2;PROBLEM STATEMENT;275
11.1.3;THE ADAPTIVE CASE;277
11.1.4;CONCLUSIONS;278
11.1.5;REFERENCES;279
11.2;CHAPTER 44. DESIGN OF SELF-TUNING CONTROLLERS FOR INDUSTRIAL PLANT;280
11.2.1;INTRODUCTION;280
11.2.2;SELF-TUNING CONTROLLER;280
11.2.3;CASE STUDY 1: ENGINE TEST CELL.;281
11.2.4;CASE STUDY 2: HIGH TEMPERATURE HEATING PLANT;283
11.2.5;CONCLUSIONS;284
11.2.6;ACKNOWLEDGEMENTS;284
11.2.7;REFERENCES;284
11.3;CHAPTER 45. B-MRAC: A NEW MODEL REFERENCE ADAPTIVE CONTROLLER BASED ON BINARY CONTROL THEORY;286
11.3.1;INTRODUCTION;286
11.3.2;STATEMENT OF THE PROBLEM;286
11.3.3;THE CONVENTIONAL MRAC;287
11.3.4;THEVS-MRAC;287
11.3.5;Table 2 VS-MRAC;287
11.3.6;BINARY MODEL REFERENCE ADAPTIVE CONTROL;288
11.3.7;SIMULATIONS;289
11.3.8;CONCLUSION;290
11.3.9;REFERENCES;290
11.3.10;APPENDIX;291
11.4;CHAPTER 46. DESIGN OF A ROBUST CONTROLLER FOR THE SUBSTRATE CONCENTRATION IN BIOREACTORS;292
11.4.1;INTRODUCTION;293
11.4.2;PROCESS AND MEASUREMENT SYSTEM;293
11.4.3;DESIGN OF THE CONTROLLER;294
11.4.4;APPUCATION OF THE CONTROL SYSTEM;296
11.4.5;CONCLUSIONS;297
11.4.6;REFERENCES;297
11.5;CHAPTER 47. STABILIZED LEAST-SQUARES ESTIMATORS FOR TIME-VARIANT PROCESSES;298
11.5.1;INTRODUCTION;298
11.5.2;'CLASSICAL' ALGORITHMS: RLS-EF AND RLS-LF;299
11.5.3;STABILIZED RLS ALGORITHMS;299
11.5.4;STABILITY OF RLS-SF ALGORITHMS;299
11.5.5;ASYMPTOTIC PROPERTIES OF THE COVARIANCE MATRDC FOR NOT PERSISTENTLY EXCITING SIGNALS;300
11.5.6;CONVERGENCE OF RLS-SI ALGORITHM;301
11.5.7;RLS-SI & RLS-LF: A NUMERICAL COMPARISION;302
11.5.8;CONCLUSIONS;303
11.5.9;REFERENCES;303
11.6;CHAPTER 48. ROBUST DESIGN OF MODEL REFERENCE ADAPTIVE CONTROL SYSTEM INCLUDING FIXED COMPENSATOR;304
11.6.1;INTRODUCTION;304
11.6.2;SYSTEM DESCRIPTION;304
11.6.3;CONTROLLERS STRUCTURE;305
11.6.4;ADAPTIVE SCHEME AND STABILITY ANALYSIS;306
11.6.5;DESIGN SCHEME OF FIXED COMPENSATOR;307
11.6.6;DESIGN EXAMPLE;308
11.6.7;CONCLUSIONS;309
11.6.8;REFERENCES;309
11.7;CHAPTER 49. ADAPTIVE ROBOT CONTROLLERS: A COMPARATIVE STUDY;310
11.7.1;INTRODUCTION;310
11.7.2;DYNAMICS MODEL OF THE SCARA ROBOT;311
11.7.3;DIRECT ADAPTIVE CONTROLLERS;311
11.7.4;INDIRECT ADAPTIVE CONTROLLERS;312
11.7.5;CONCLUSION;314
11.7.6;ACKNOWLEDGEMENT;315
11.7.7;REFERENCES;315
11.8;CHAPTER 50. DESIGN OF COMBINED VARIABLE STRUCTURE SYSTEMS AND REFERENCE EQUATION SYSTEM ALGORITHMS;316
11.8.1;INTRODUCTION;316
11.8.2;BASIC STRUCTURES OF SPEED GRADIENT ALGORITHMS;316
11.8.3;SIGNAL-PARAMETRIC ADAPTIVE CONTROL ALGORITHMS DESIGN;317
11.8.4;CONCLUSION;320
11.8.5;REFERENCES;320
12;PART VII: VARIABLE STRUCTURE CONTROL;322
12.1;CHAPTER 51. DESIGN OF VARIABLE STRUCTURE CONTROL SYSTEMS WITH INTERNAL MODELS;322
12.1.1;INTRODUCTION;322
12.1.2;MAIN RESULTS;322
12.1.3;DESIGN OF HYPERPLANES AND COMPENSATORS;323
12.1.4;EXAMPLE;324
12.1.5;CONCLUSIONS;324
12.1.6;REFERENCES;324
12.2;CHAPTER 52. "INTEGRAL LYAPUNOV FUNCTIONS" BASED ON INCOMPLETE STATE FEEDBACK;328
12.2.1;INTRODUCTION;328
12.2.2;STATEMENT OF THE INTERGRAL LYAPUNOV FUNCTION;328
12.2.3;SATISFYING THE LYAPUNOV CONDITIONS;328
12.2.4;EXTENDED STATEMENTS OF THE INTEGRAL LYAPUNOV FUNCTION;330
12.2.5;...LICATIONS: VARIABLE
STRUCTURE CONTROLLER;330
12.2.6;APPLICA.ON: "SAFE OBSERVERS";331
12.2.7;CONCLUSION;332
12.2.8;REFERENCES;332
12.3;CHAPTER 53. SLIDING MODE CONTROLLER DESIGN FOR NONLINEAR SYSTEMS: AN EXTENDED LINEARIZATION APPROACH;334
12.3.1;l.INTRODUCTION;334
12.3.2;2. SLIDING MODE CONTROLLERS \IA

EXTENDED LINEARIZA.ON;334
12.3.3;3. SOME ......... EXAMPLES;336
12.3.4;4. CONCLUSIONS;339
12.3.5;5. REFERENCES;339
12.4;CHAPTER 54. MULTI-INPUT VARIABLE STRUCTURE CONTROLLERS;340
12.4.1;1. INTRODUCTION;340
12.4.2;2. VSS SWITCHING SURFACES AND SUDING MOTION:;340
12.4.3;3. TWO APPROACHES TO SWITCHING SURFACE DESIGN FOR LINEAR SYSTEMS;342
12.4.4;4. HIERARCHY OF CONTROL;344
12.4.5;5. EXAMPLE;345
12.4.6;6. CONCLUDING REMARKS;345
12.4.7;REFERENCES;345
12.5;CHAPTER 55. ROBUST EIGENVALUE ASSIGNMENT TECHNIQUES FOR THE SLIDING MODE;346
12.5.1;INTRODUCTION;346
12.5.2;SLIDING MOTION IN VSC;346
12.5.3;THE REGULATOR SYSTEM;346
12.5.4;CONTROLLER DESIGN FOR EIGENVALUES IN A REGION;347
12.5.5;EXAMPLE;348
12.5.6;ROBUSTNESS;349
12.5.7;CONCLUSION;350
13;PART VIII: NONLINEAR CONTROL SYSTEMS;352
13.1;CHAPTER 56. NONLINEAR CONTROL OF MOLECULAR WEIGHT IN A POLYMERIZATION REACTOR;352
13.1.1;INTRODUCTION;352
13.1.2;THE REACTORMODEL AND THE CONTROL PROBLEM;353
13.1.3;SOLVABILITY IN TERMS OF EXISTENCE OF A COORDINATE CHANGE TO AN EQUIVALENT SOLVABLE SYSTEM;354
13.1.4;ADMISSIBLE REACTOR CONTROL CONFIGURATIONS AND STRUCTURAL ASSESSMENT O F PERFORMANCE;355
13.1.5;SIMULATION TEST;356
13.1.6;CONCLUSIONS;356
13.1.7;REFERENCES;356
13.1.8;APPENDIX: THE REACTOR MODEL;356
13.2;CHAPTER 57. A NEW CONVERSE LYAPUNOV RESULT ON EXPONENTIAL STABILITY;358
13.2.1;1 Introduction;358
13.2.2;2 The main result;359
13.2.3;3 Linear time-invariant systems;360
13.2.4;4 Linearization about an equilibrium state;361
13.2.5;5 Conclusions;362
13.2.6;6 Acknowledgments;362
13.2.7;References;362
13.3;CHAPTER 58. SYNTHESIS OF PLANAR SLIDING MANIFOLDS FOR NONLINEAR SYSTEMS;364
13.3.1;INTRODUCnON;364
13.3.2;REVIEW OF SOME BASIC FACTS;364
13.3.3;THE P L
ANAR SLIDING MANIFOLD APPROACH;365
13.3.4;AN EXPLICIT VSS CONTROLLER;366
13.3.5;ROBUSTNESS PROPERTIES;366
13.3.6;EXAMPLE;367
13.3.7;REFERENCES;368
13.4;CHAPTER 59. NONLINEAR CONTROL SYSTEM DESIGN BASED ON NEWLY DEVELOPED DYNAMIC PROGRAMMING ALGORITHM;370
13.4.1;INTRODUCTION;370
13.4.2;GENERAL CONTROL PROBLEM;371
13.4.3;CONVENTIONAL DYNAMIC PROGRAMMING;371
13.4.4;ITERATIVE DYNAMIC PROGRAMMING;371
13.4.5;APPLICATION TO NONLINEAR CONTROL SYSTEM DESIGN;372
13.4.6;CONCLUSIONS;375
13.4.7;ACKNOWLEDGMENT;375
13.4.8;REFERENCES;375
13.5;CHAPTER 60. POSTPONING CHAOS USING A ROBUST STABILIZER1
;376
13.5.1;1 Introduction;376
13.5.2;2 The quadratic mapping;376
13.5.3;3 The stabilization principle;377
13.5.4;4 Stabilized dynamics;377
13.5.5;5 Quadratic mapping revisited;378
13.5.6;6 Experiments;379
13.5.7;7 Process parameter estimation;380
13.5.8;8 Higher-dimensional systems;380
13.5.9;9 Conclusions;380
13.5.10;Acknowledgement;380
13.5.11;References;380
13.6;CHAPTER 61. DESIGN METHODS OF NONLINEAR DYNAMIC COMPENSATOR BASED UPON CANONICAL FORMS;382
13.6.1;1 Introduction;382
13.6.2;2 System Description and Some Mathematical Notations;382
13.6.3;3 State Feedback Linearization;383
13.6.4;4 Nonlinear Observer;383
13.6.5;5 Nonlinear Dynamic Compensator;384
13.6.6;6 Example;386
13.6.7;7 Conclusions;387
13.6.8;References;387
13.7;CHAPTER 62. A COMPENSATING METHOD FOR THE EFFECTS OF THE CHANGE OF OPERATING STATE IN BILINEAR SYSTEMS BY STATE LINEARIZATION TECHNIQUE;388
13.7.1;1. INTRODUCTION;388
13.7.2;2. LINEAR TRANSFORMATION OF NONLINEAR SYSTEM^';388
13.7.3;3. CONSTRUCTION OF OUTPUT FEEDBACK CONTROL SYSTEM;390
13.7.4;4. CONTROL PERFORMANCES OF A LINEARIZED BILINEAR SYSTEM;390
13.7.5;5. CONCLUSIONS;393
13.7.6;REFERENCES;393
13.8;CHAPTER 63. NONLINEAR FEEDBACK SC CONTROL OF A POWER SYSTEM;394
13.8.1;INTRODUCTION;394
13.8.2;MODEL OF SMIB POWER SYSTEM;394
13.8.3;NONLINEAR FEEDBACK OPTIMAL CONTROL;395
13.8.4;THREE-PHASE FAULT SIMULATION FOR MAXIMUM PRINCIPLE-DERIVED CONTROL;395
13.8.5;VARIABLE-STRUCTURE CONTROL;395
13.8.6;VARIABLE-STRUCTURE SIMULATION THREE-PHASE FAULT;396
13.8.7;CONCLUSIONS;397
13.8.8;ACKNOWLEDGEMENT;397
13.8.9;REFERENCES;397
13.8.10;APPENDIX;397
13.9;CHAPTER 64. NONLINEAR MODEL-MATCHING DESIGN OF SERVOMECHANISMS;398
13.9.1;INTRODUCTION;398
13.9.2;PROBLEM DEFINITION;398
13.9.3;AN INTERES.NG DESIGN QUESTON;399
13.9.4;DESIGN WITH VOLTERRA OPERATORS;400
13.9.5;PARTIAL LINEARIZATON;400
13.9.6;REALIZATON;400
13.9.7;EXAMPLES;401
13.9.8;CONCLUSION;403
13.9.9;ACKNOWLEDGEMENT;403
13.9.10;REFERENCES;403
13.10;CHAPTER 65. TOOLS FOR THE DESIGN OF SINGLE-LOOP CONTROL SYSTEMS WITH ACTUATOR SATURATION APPLIED TO HYDROPOWER CONTROL;404
13.10.1;INTRODUCTION;404
13.10.2;THE HYDROPOWER SYSTEM;404
13.10.3;MODELLING AND IDENTIFICATION
;405
13.10.4;DESIGN OF THE LINEAR REGULATOR;405
13.10.5;STABILITY ANALYSIS;405
13.10.6;PROPOSAL FOR THE CONTROL SYSTEM.;408
13.10.7;CONCLUSIONS;408
13.10.8;REFERENCES;409
13.10.9;APPENDIX;409
13.11;CHAPTER 66. MULTI-LAYER NEURAL NETWORKS FOR THE OPTIMAL CONTROL OF NONLINEAR DYNAMIC SYSTEMS;410
13.11.1;INTRODUCTION;410
13.11.2;STATEMENT OF THE OPTIMAL CONTROL PROBLEM;410
13.11.3;SOLUTION OF THE NONLINEAR PROGRAMMING PROBLEM BY THE GRADIENT METHOD;411
13.11.4;EXAMPLES;412
13.11.5;CONCLUSIONS;414
13.11.6;REFERENCES;414
13.11.7;APPENDIX;415
14;PART IX: CONTROL OF DISTRIBUTED PARAMETER SYSTEMS;416
14.1;CHAPTER 66. ASYMPTOTICALLY POLE LOCATION OF OPTIMAL REGULATOR FOR TIME-DELAY SYSTEMS;416
14.1.1;1. Introduction;416
14.1.2;2. Optimal regulator;417
14.1.3;3. Closed-loop properties and remarks;418
14.1.4;4. Main results;418
14.1.5;5.Conclusion;420
14.1.6;6. Illustrate example;420
14.1.7;Reference;420
14.2;CHAPTER 67. ON THE OPTIMAL BOUNDARY CONTROL FOR STOCHASTIC LINEAR ELASTIC SYSTEMS;422
14.2.1;MATHEMATICAL MODEL OF SYSTEM DYNAMICS;422
14.2.2;OPTIMAL BOUNDARY CONTOOL PROBLEMS;423
14.2.3;DERIVATION OF THE OPTIMAL B0UNDARY CONTROL
;423
14.2.4;CONSTRICTION OF OPTIMAL BOUNDARY CONTROL SYSTEMS
;424
14.2.5;CONCLUSIONS;424
14.2.6;REFERENCES;424
14.2.7;APPENDICES;425
14.3;CHAPTER 68. CONTROL OF HEAT EXCHANGERS BY PLACEMENT OF CLOSED-LOOP POLES;426
14.3.1;INTRODUCTION;426
14.3.2;OUTLINE OF A POLE ASSIGNMENT LAW;426
14.3.3;PARALLEL FLOW HEAT EXCHANCSER;430
14.3.4;REFERENCES;431
14.4;CHAPTER 69. NECESSARY AND SUFFICIENT CONDITION OF PARETO OPTIMALITY FOR PROBLEMS WITH MULTI-EQUALITY OPERATOR CONSTRAINTS;432
14.4.1;INTRODUCTIONG;432
14.4.2;DEFINITIONS OF CONES;432
14.4.3;STATEMENT OF A PARETO OPTIMIZATION PROBLEM;433
14.4.4;NECESSARY AND SUFFICIENT CONDITION OF PARETO OPTIMALITY;433
14.4.5;CONCLUSIONS;437
14.4.6;REFERENCES;437
14.5;CHAPTER 70. BOUNDARY STABILIZATION OF SEMILINEAR PARABOLIC DISTRIBUTED SYSTEMS;438
14.5.1;1. INTRODUCTION;438
14.5.2;2. CONTROL OBJECT;438
14.5.3;3. MATHEMATICAL FORMULATION OF T H E SYSTEM;438
14.5.4;4. EXISTENCE OF THE SOLUTION UNDER STATIC OUTPUT FEEDBACK;439
14.5.5;5. EXISTENCE AND STABILIZATION OF THE SOLUTION FOR THE SYSTEM WITH A FINITE DIMENSIONAL DYNAMIC COMPENSATOR;441
14.5.6;6. CONCLUTION;442
14.5.7;APPENDIX 1 (DERIVATION OF EQUATION (3.1));442
14.5.8;REFERENCES;443
14.6;CHAPTER 71. SPLINE-BASED ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS;444
14.6.1;1. INTRODUCTION;444
14.6.2;2. PRELIMINARIES;445
14.6.3;CONTINUOUS MODELING OF DPS;445
14.6.4;4. CONTROL SYNTHESIS;447
14.6.5;5. ILLUSTRATIVE EXAMPLE;448
14.6.6;6. CONCLUDING REMARKS;449
14.6.7;REFERENCES;449
14.7;CHAPTER 72. OBSERVERS FOR INFINITE DIMENSIONAL SYSTEMS WITH UNKNOWN INPUTS;450
14.7.1;INTRODUCTION;450
14.7.2;STATEMENT OF THE PROBLEM;450
14.7.3;CONSTRUCTION OF OBSERVERS;450
14.7.4;CONCLUSION;453
14.7.5;REFERENCES;453
14.8;CHAPTER 73. PRACTICAL STABILIZING CONTROL OF UNCERTAIN DIFFUSION SYSTEMS;456
14.8.1;INTRODUCTION;456
14.8.2;THE UNCERTAIN SYSTEM;456
14.8.3;STABILIZATION PROBLEM;457
14.8.4;DIFFUSION SYSTEM;457
14.8.5;VARIABLE STRUCTURE CONTROL;458
14.8.6;PRACTICAL STABILIZING CONTROL;458
14.8.7;VARIABLE STRUCTURE CONTROL;458
14.8.8;COMPUTATIONAL RESULTS;459
14.8.9;CONCLUSIONS;459
14.8.10;REFERENCES;459
14.8.11;APPENDIX;460
15;PART X: CONTROL OF DISCRETE EVENT SYSTEMS;462
15.1;CHAPTER 74. SYNTHESIS OF DEADLOCK-FREE CONTROL STRUCTURES USING PETRI-NETS;462
15.1.1;INTRODUCTION;462
15.1.2;PETRI-NETS;462
15.1.3;SYNTHESIS OF NET CORRECTIONS;464
15.1.4;AN APPLICATION;465
15.1.5;CONCLUDING REMARKS;466
15.1.6;REFERENCES;467
15.2;CHAPTER 75. DESIGN OF A DISCRETE EVENT CONTROLLER FOR A MODEL RAILWAY;468
15.2.1;Introduction;468
15.2.2;An Optimal Stopping Problem;468
15.2.3;Solution to the Optimal Stopping Problem;470
15.2.4;Application;470
15.2.5;Conclusion;471
15.2.6;References;472
15.3;CHAPTER 76. CONTROL OF ELEMENTARY DISCRETE EVENT SYSTEMS: SYNTHESIS OF CONTROLLER WITH NON-ZERO DECISION TIME;474
15.3.1;1 Introduction;474
15.3.2;2 Time systems;474
15.3.3;3 Controllable behaviours;474
15.3.4;4 Elementary discrete event systems;475
15.3.5;5 Delayed system;475
15.3.6;6 Control problem;476
15.3.7;7 Sufficient conditions;478
15.3.8;8 Conclusion;478
15.3.9;References;479
15.4;CHAPTER 77. ON THE DESIGN OF DISCRETE EVENT DYNAMIC SYSTEMS BY MEANS OF THE BOOLEAN DIFFERENTIAL CALCULUS;480
15.4.1;INTRODUCTION;480
15.4.2;PRELIMINARIES;480
15.4.3;A DESIGN ALGORITHM FOR DEDS;481
15.4.4;CONCLUSION;485
15.4.5;REFERENCES;485
15.5;CHAPTER 78. AN EFFECTIVE WAY TO UNDO A DISCRETE EVENT SYSTEM OF ITS (DEAD)LOCK;486
15.5.1;NOTATION;486
15.5.2;MODEL AND DEFINITIONS;486
15.5.3;DEADLOCK;487
15.5.4;DEADLOCK FREE CONNECTIONS;487
15.5.5;UNDO THE DEADLOCK;487
15.5.6;AN EXAMPLE;488
15.5.7;CONCLUSION;490
15.5.8;REFERENCES;491
16;PART XI: HIERARCHICAL AND DECENTRALIZED CONTROL;492
16.1;CHAPTER 79. CHARACTERIZATIONS OF DECENTRALIZED FIXED MODES FOR DESCRIPTOR SYSTEMS;492
16.1.1;INTRODUCTION;492
16.1.2;PRELIMINARIES;492
16.1.3;GENERAL CHARACTERIZATIONS OF DECENTRALIZED FIXED MODES FOR DESCRIPTOR SYSTEMS;493
16.1.4;ALGEBRAIC CHARACTERIZATIONS OF DFIM;494
16.1.5;ALGEBRAIC CHARACTERIZATIONS OF DFEM;495
16.1.6;A NUMERICAL EXAMPLE;496
16.1.7;CONCLUSIONS;497
16.1.8;References;497
16.2;CHAPTER 80. DECENTRALIZED OPTIMAL CONTROL WITH EXTENSION;498
16.2.1;INTRODUCTION;498
16.2.2;EXTENSION PRINCIPLE;499
16.2.3;CONTRACTABILITY;499
16.2.4;DECENTRALIZED OPTIMAL CONTROL;500
16.2.5;CONCLUSIONS;502
16.2.6;REFERENCES;502
16.3;CHAPTER 81. A GENERAL FRAMEWORK FOR CONSTRAINED CONFIGURATION CONTROL LAW DESIGN;504
16.3.1;INTRODUCTION;504
16.3.2;PRELIMINARIES AND NOTATION;504
16.3.3;MAIN RESULTS;505
16.3.4;ILLUSTRATIVE EXAMPLES;507
16.3.5;A NUMERICAL EXAMPLE;508
16.3.6;CONCLUSIONS;509
16.3.7;REFERENCES;509
16.4;CHAPTER 82. A PROCEDURE FOR THE DELIMITATION OF TASKS IN CHEMICAL PROCESS CONTROL HIERARCHIES;510
16.4.1;INTRODUCTION
;510
16.4.2;METHOD;510
16.4.3;EXAMPLES;511
16.4.4;APPLICATION TO PLATFORMER UNIT;513
16.4.5;CONCLUSION;515
16.4.6;REFERENCES;515
16.5;CHAPTER 83. DESIGN OF A STABILIZING DECENTRALIZED CONTROL FOR LINEAR INTERCONNECTED SYSTEMS WITH TIME-DELAY;516
16.5.1;INTRODUCTION;516
16.5.2;DECENTRALIZED STABILIZATION;516
16.5.3;NUMERICAL EXAMPLE;518
16.5.4;CONCLUSION;519
16.5.5;REFERENCES;519
17;PART XII: KNOWLEDGE-BASED AND LEARNING CONTROL;520
17.1;CHAPTER 84. DESIGN OF A RULE-BASED CONTROLLER FOR THE INVERTED PENDULUM;520
17.1.1;SURVEY;520
17.1.2;THE ..RATIVE LEARNING PROCESS;521
17.1.3;RESULTS AND CONCLUSION;523
17.1.4;ACKNOWLEDGEMENT;523
17.1.5;REFERENCES;523
17.2;CHAPTER 85. IMPROVED ALLOCATION OF WEIGHTS FOR ASSOCIATIVE MEMORY STORAGE IN LEARNING CONTROL SYSTEMS;524
17.2.1;1. Introduction;524
17.2.2;2. The Associative Memory Unit and Training of Weights;524
17.2.3;3. Desirable Properties of the Scheme for the Allocation of Weights;525
17.2.4;4. The Albus Scheme tor Allocating Weights;525
17.2.5;5. An improved Allocation of Weights;525
17.2.6;6. Constructing a Table Qptimum Lattices for General Values of n and p;526
17.2.7;7. Comments on the Tabulated Results;526
17.2.8;References;526
17.3;CHAPTER 86. THE CONTROL OF LARGE SCALE SYSTEMS BY USING A KNOWLEDGEBASED CONTROLLER;530
17.3.1;THE PROBLEM STATELIENT;530
17.3.2;THE STRUCTURE OF A KNOWLEDGEBASED CONTROLLER;530
17.3.3;THE OPERATION OF A CONTROL
SYSTEM BY USING A K3C;531
17.3.4;APPLICATION: CONTROL OF A LARGESCALE HYDROLOGICAL SYSTEM USING A KNOWLEDGE-BASED CONTROLLER;532
17.3.5;CONCLUDING REMARKS;533
17.3.6;REFERENCES;533
18;PART XIII: LQG/LTR-DESIGN;536
18.1;CHAPTER 87. NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL FIXED-ORDER DYNAMIC COMPENSATION OF LINEAR DISCRETE-TIME SYSTEMS1;536
18.1.1;1. Introduction;536
18.1.2;2. The Optimal Fixed-Order Dynamic Compensation Problem;536
18.1.3;3. Necessary Conditions For Optimal Fixed-Order Dynamic Compensation.;538
18.1.4;4 . Sufficient Conditions For Fixed-Order Optimal Dynamic Compensation.;539
18.1.5;5. Compensatability test and example;540
18.1.6;6 . Conclusions.;540
18.1.7;References;541
18.2;CHAPTER 88. LQG MULTIVARIABLE SELF-TUNING CONTROL DESIGN;542
18.2.1;Abstract;542
18.2.2;1. Introduction;542
18.2.3;2. Discrete Multivariable ARMAX System Description;542
18.2.4;3. LQG Control Law;543
18.2.5;4. Multivariable Identification Algorithm;545
18.2.6;5. Self-Tuning Algorithm;546
18.2.7;7. Conclusions;546
18.2.8;References;546
18.3;CHAPTER 89. POLYNOMIAL SOLUTION TO THE STANDARD LQ-OPTIMAL CONTROL PROBLEM: SCALAR CASE;548
18.3.1;1 Introduction;548
18.3.2;2 Problem Formulation;549
18.3.3;3 Problem Solution;550
18.3.4;4 Conclusions;552
18.3.5;Acknowledgements;552
18.3.6;References;552
19;PART XIV: COMPUTER AIDED DESIGN;554
19.1;CHAPTER 90. CAD TECHNIQUES FOR A STRUCTURAL APPROACH TO NONINTERACTION AND DISTURBANCE REJECTION;554
19.1.1;INTRODUCTIO N;554
19.1.2;THEORE.CAL FOUNDATONS;554
19.1.3;APPLICATION 1. DISTURBANCE REJECTION;555
19.1.4;APPLICATON 2.INPUT-0UTPUT DECOUPLING;556
19.1.5;APPENDIX A;558
19.1.6;APPENDDC .;558
19.1.7;CONCLUSIONS;558
19.1.8;ACKNOWLEDGEMENTS;559
19.1.9;REFERENCES;559
19.2;CHAPTER 91. COMPUTER AIDED PROBLEM FORMULATION OF CONTROL PROBLEMS;560
19.2.1;Abstract;560
19.2.2;Introduction;560
19.2.3;Problems in Control Design Process;560
19.2.4;Notification of Binary Control Problems;561
19.2.5;Additional Parts in Control Concepts;562
19.2.6;Balance Program to Prove Operators Concept;562
19.2.7;Conclusions;563
19.2.8;References;563
20;PART XV: MODEL MATCHING AND MODEL REDUCTION;564
20.1;CHAPTER 92. OUTPUT-FEEDBACK CONTROL OF A HYDRAULIC DRIVE USING BALANCED MODEL REDUCTION DESIGN METHOD;564
20.1.1;INTRODUCTION;564
20.1.2;CONTROLLABILITY, REACHABILITY AND CONSTRUCTIBILITY, OBSERVABILITY;564
20.1.3;MEASURES FOR STRUCTURAL PROPERTIES USING PRINCIPAL COMPONENT ANALYSIS;565
20.1.4;BALANCED REALIZATIONS;566
20.1.5;MODEL REDUCTION;566
20.1.6;OUTPUT FEEDBACK DESIGN;566
20.1.7;DISCRETE TIME SYSTEMS;567
20.1.8;CONTROL OF A HYDRAULIC DRIVE;567
20.1.9;CONCLUSION;568
20.1.10;REFERENCES;568
20.2;CHAPTER 93. SUFFICIENCY CRITERIA FOR FREQUENCYDOMAIN APPROXIMATE MODELING OF SISO PLANTS WITH INPUT DEAD-TIME;570
20.2.1;INTRODUCnON;570
20.2.2;FREQUENCY RESPONSE ERRORS;570
20.2.3;CONDITIONS FOR MODELING ERRORS;571
20.2.4;MODELING FRACTIONAL DEAD-TIME;573
20.2.5;CONCLUSIONS;574
20.2.6;REFERENCES;574
20.3;CHAPTER 94. MODEL MATCHING OF DESCRIPTOR SYSTEMS BY PROPORTIONAL STATE FEEDBACK;576
20.3.1;Introduction;576
20.3.2;Formulation;576
20.3.3;Properness and Stability;577
20.3.4;Design Procedure;578
20.3.5;Comments;578
20.3.6;References;578
20.4;CHAPTER 95. NATURALLY MOTIVATED PROCEDURE FOR THE DESIGN OF A REDUCED-ORDER CONTROLLER;580
20.4.1;INTRODUCTION;580
20.4.2;APPROXIMATON METHOD;580
20.4.3;DESIGN PRiXEDURE;581
20.4.4;DISCUSSION;582
20.4.5;SUMMARY AND CONCLUSION;584
20.4.6;REFERENCES;585
21;PART XVI: VARIOUS APPUCATIONS;586
21.1;CHAPTER 96. A STATE-FEEDBACK CONTROL FOR A 4-DOF MANIPULATOR WITH A TRANSVERSAL FLEXIBLE LINK;586
21.1.1;I. INTRODUCTION;586
21.1.2;II. RIGID LINKS AND ACTUATORS MODEL;587
21.1.3;III. FLEXIBLE LINK DYNAMICS;587
21.1.4;IV. CONTROL OF THE RIGID LINKS;588
21.1.5;V. CONTROL OF THE FLEXIBLE LINK;589
21.1.6;VI. SIMULATION RESULTS AND DISCUSSION;589
21.1.7;VII. CONCLUSIONS;590
21.1.8;ACKNOWLEDGEMENTS;590
21.1.9;REFERENCES;590
21.2;CHAPTER 97. CONTROL DESIGN METHODS FOR ACTIVE SOUND REDUCTION SYSTEMS;592
21.2.1;I INTRODUCTION;592
21.2.2;II ADAPTIVE FILTERING;592
21.2.3;Ill GENERALIZED MINIMUM VARIANCE CONTROL;594
21.2.4;IV IDENTIFICATION OF THE ADAPTIVE FILTERING STRATEGY;594
21.2.5;V POLE AND ZERO ASSIGNMENT IN GMV CONTROL;595
21.2.6;VI SIMULATIONS;595
21.2.7;VII CONCLUSIONS;597
21.2.8;VIII ACKNOWLEDGEMENTS;597
21.2.9;IX REFERENCES;597
21.3;CHAPTER 98. A PREDICTIVE CONTROL ALGORITHM FOR CONTINUOUS DISTILLATION COLUMNS;598
21.3.1;INTRODUCTION;598
21.3.2;THE PREDIOTVE CONTROL ALGORITHM;599
21.3.3;RESULTS;601
21.3.4;CONCLUSIONS;602
21.3.5;NOMENCLATURE;602
21.3.6;REFERENCES;603
21.4;CHAPTER 99. A NEW POWER SYSTEM STABILIZER BASED ON FIELD FLUX CONTROL;604
21.4.1;INTRODUCTION;604
21.4.2;MODEL POWER SYSTEM;604
21.4.3;PROPOSED CONTROL SCHEME;605
21.4.4;EXPERIMENTAL RESULTS;607
21.4.5;CONCLUSIONS;608
21.4.6;REFERENCES;608
21.4.7;APPENDICES;609
21.4.8;APPENDIX I Equations for simulation studies;609
21.4.9;APPENDIX II Coefficients K1 to K8 In Fig. 3;609
21.4.10;APPENDIX III State equations;609
21.4.11;APPENDIX IV Machine parameters;609
21.4.12;NOMENCLATURE;609
22;AUTHOR INDEX;610
23;KEYWORD INDEX;612



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.