Buch, Englisch, Band 13939, 839 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1282 g
28th International Conference, IPMI 2023, San Carlos de Bariloche, Argentina, June 18-23, 2023, Proceedings
Buch, Englisch, Band 13939, 839 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1282 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-031-34047-5
Verlag: Springer Nature Switzerland
The 63 full papers presented in this volume were carefully reviewed and selected from 169 submissions. They were organized in topical sections as follows: biomarkers; brain connectomics; computer-aided diagnosis/surgery; domain adaptation; geometric deep learning; groupwise atlasing; harmonization; federated learning; image synthesis; image enhancement; multimodal learning; registration; segmentation; self supervised learning; surface analysis and segmentation.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
Weitere Infos & Material
Biomarkers Resolving quantitative MRI model degeneracy with machine learning via training data distribution design.- Subtype and stage inference with timescales.- Brain connectomics HoloBrain: A Harmonic Holography for Self-organized Brain Function.- Species-Shared and -Specific Brain Functional Connectomes Revealed by Shared-Unique Variational Autoencoder.- mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds.- Computer-Aided Diagnosis/Surgery Diffusion Model based Semi-supervised Learning on Brain Hemorrhage Images for Efficient Midline Shift Quantification.- Don’t PANIC: Prototypical Additive Neural Network for Interpretable Classification of Alzheimer’s Disease.- Filtered trajectory recovery: a continuous extension to event-based model for Alzheimer’s disease progression modeling.- Live image-based neurosurgical guidance and roadmap generation using unsupervised embedding.- Meta-information-aware Dual-path Transformer for Differential Diagnosis of Multi-type Pancreatic Lesions in Multi-phase CT.- MetaViT: Metabolism-Aware Vision Transformer for Differential Diagnosis of Parkinsonism with 18F-FDG PET.- Multi-task Multi-instance Learning for Jointly Diagnosis and Prognosis of Early-stage Breast Invasive Carcinoma from Whole-slide Pathological Images.- On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations.- Pixel-level explanation of multiple instance learning models in biomedical single cell images.- Marr Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model.- Weakly Semi-Supervised Detection in Lung Ultrasound Videos.- Optimization Differentiable Gamma Index-based loss functions: accelerating Monte-Carlo radiotherapy dose simulation.- Diversified stochastic orthonormal projective non-negative matrix factorization for big neuroimaging data.- Reconstruction Deep Physics-informed Super-resolution of Cardiac 4D-flow MRI.- Fast-MC-PET: A Novel Deep Learning-aid Motion Correction and Reconstruction Framework for Accelerated PET.- MeshDeform: Surface Reconstruction of Subcortical Structures via Human Brain MRI.- Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging.