Foo / El-Halwagi | Process Intensification and Integration for Sustainable Design | Buch | 978-3-527-34547-2 | sack.de

Buch, Englisch, 326 Seiten, Format (B × H): 178 mm x 252 mm, Gewicht: 794 g

Foo / El-Halwagi

Process Intensification and Integration for Sustainable Design

Buch, Englisch, 326 Seiten, Format (B × H): 178 mm x 252 mm, Gewicht: 794 g

ISBN: 978-3-527-34547-2
Verlag: WILEY-VCH


Dieses Buch basiert auf grundlegenden Techniken und jüngsten industriellen Erfahrungen und erörtert die zahlreichen Entwicklungen bei der Prozessintensivierung und -integration. Es konzentriert sich auf die Steigerung der Nachhaltigkeit über verschiedene übergreifende Themen wie nachhaltige Fertigung, energiesparende Technologien sowie Techniken zur Ressourcenschonung und Vermeidung von Umweltverschmutzung.

Process Intensification and Integration for Sustainable Design behandelt: Schiefergas als Option für die Herstellung von Chemikalien und Herausforderungen für die Prozessintensivierung; das Design und die technoökonomische Analyse von Trenneinheiten zur Bewältigung der Variabilität der Rohstoffe bei der Schiefergasbehandlung; RO-PRO Entsalzung; und technoökonomische und umweltbezogene Bewertung ultradünner Polysulfonmembranen für die sauerstoffangereicherte Verbrennung. Als nächstes wird die Prozessintensivierung membranbasierter Systeme für Wasser-, Energie- und Umweltanwendungen untersucht, sowie das Design einer intern wärmeintegrierten Destillationskolonne (HIDiC); und grafische Analyse und Integration von Wärmetauschernetzen mit Wärmepumpen. Die Zersetzung und Implementierung einer großflächigen Wärmeintegration zwischen Anlagen sowie die Synthese von Kraft-Wärme-Kopplungsnetzen (CHAMENs) mit erneuerbaren Energien werden behandelt. Das Buch behandelt auch Optimierungsstrategien zur Integration und Intensivierung von Wohnkomplexen; eine Bewertung des nachhaltigen Prozesses zur Umwandlung von Biomasse; und mehr.

* Deckt die vielen Fortschritte und Änderungen bei der Intensivierung und Integration von Prozessen ab
* Behandelt grundlegende Techniken und aktuelle industrielle Erfahrungen, um die Praktiker in ihren eigenen Prozessen anzuleiten
* Bietet umfassende Diskussion zu Themen, die unter anderem für die Prozessindustrie, Bioraffinerien und das Energiemanagement von Anlagen relevant sind
* Bietet eine aufschlussreiche Analyse und Integration des Reaktor- und Wärmetauschernetzwerks
* Behandelt die Optimierung integrierter Wasser- und Multi-Regenerator-Membransysteme mit Multi-Kontaminationen

Process Intensification and Integration for Sustainable Design ist ein ideales Buch für Verfahrenstechniker, Chemieingenieure, Ingenieurwissenschaftler, Ingenieurbüros und Chemiker.
Foo / El-Halwagi Process Intensification and Integration for Sustainable Design jetzt bestellen!

Weitere Infos & Material


Preface xv

1 Shale Gas as an Option for the Production of Chemicals and Challenges for Process Intensification 1
Andrea P. Ortiz-Espinoza and Arturo Jiménez-Gutiérrez

1.1 Introduction 1

1.2 Where Is It Found? 1

1.3 Shale Gas Composition 3

1.4 Shale Gas Effect on Natural Gas Prices 3

1.5 Alternatives to Produce Chemicals from Shale Gas 4

1.6 Synthesis Gas 4

1.7 Methanol 5

1.8 Ethylene 6

1.9 Benzene 7

1.10 Propylene 7

1.11 Process Intensification Opportunities 8

1.12 Potential Benefits and Tradeoffs Associated with Process Intensification 10

1.13 Conclusions 11

References 11

2 Design and Techno-Economic Analysis of Separation Units to Handle Feedstock Variability in Shale Gas Treatment 15
Eric Bohac, Debalina Sengupta, andMahmoud M. El-Halwagi

2.1 Introduction 15

2.2 Problem Statement 16

2.3 Methodology 17

2.4 Case Study 17

2.4.1 Data 18

2.4.2 Process Simulations and Economic Evaluation 19

2.4.2.1 Changes in Fixed and Variable Costs 20

2.4.2.2 Revenue 21

2.4.2.3 Economic Calculations 21

2.4.3 Safety Index Calculations 22

2.5 Discussion 23

2.5.1 Process Simulations 23

2.5.1.1 Dehydration Process 23

2.5.1.2 NGL Recovery Process 23

2.5.1.3 Fractionation Train 26

2.5.1.4 Acid Gas Removal 26

2.5.2 Profitability Assessment 26

2.5.3 High Acid Gas Case Economics 30

2.5.4 Safety Index Results 30

2.5.5 Sensitivity Analysis 32

2.5.5.1 Heating Value Cases 33

2.5.5.2 NGL Price Cases 34

2.6 Conclusions 35

Appendices 35

2.A Appendix A: Key Parameters for the Dehydration Process 36

2.B Appendix B: Key Parameters for the Turboexpander Process 36

2.C Appendix C: Key Parameters for the Fractionation Train 37

2.D Appendix D: Key Parameters for the Acid Gas Removal System 37

References 39

3 Sustainable Design and Model-Based Optimization of Hybrid RO–PRO Desalination Process 43
Zhibin Lu, Chang He, Bingjian Zhang, Qinglin Chen, and Ming Pan

3.1 Introduction 43

3.2 Unit Model Description and Hybrid Process Design 47

3.2.1 The Process Description 47

3.2.2 Unit Model and Performance Metrics 49

3.2.2.1 RO Unit Model 49

3.2.2.2 PRO Unit Model 52

3.2.3 The RO–PRO Hybrid Processes 54

3.2.3.1 Open-Loop Configuration 54

3.2.3.2 Closed-Loop Configuration 55

3.3 Unified Model-Based Analysis and Optimization 56

3.3.1 Dimensionless Mathematical Modeling 56

3.3.2 Mathematical Model and Objectives 58

3.3.3 Optimization Results and Comparative Analysis 59

3.4 Conclusion 62

Nomenclature 63

References 65

4 Techno-economic and Environmental Assessment of Ultrathin Polysulfone Membranes for Oxygen-Enriched Combustion 69
Serene Sow Mun Lock, Kok Keong Lau, Azmi Mohd Shariff, Yin Fong Yeong, and Norwahyu Jusoh

4.1 Introduction 69

4.2 Numerical Methodology for Membrane Gas Separation Design 70

4.3 Methodology 73

4.3.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular Scale) 73

4.3.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale) 75

4.3.3 Design of Oxygen-Enriched Combustion Using Ultrathin PSF Membranes 75

4.4 Results and Discussion 77

4.4.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular) 77

4.4.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale) 79

4.4.3 Design of Oxygen-Enriched Combustion Using Ultrathin PSF Membranes 82

4.4.3.1 Membrane Area Requirement 82

4.4.3.2 Compressor Power Requirement 83

4.4.3.3 Turbine Power Requirement 85

4.4.3.4 Economic Parameter 88

4.5 Conclusion 90

Acknowledgment 91

References 91

5 Process Intensification of Membrane-Based Systems for Water, Energy, and Environment Applications 97
Nik A. H.M. Nordin, Zulfan A. Putra, Muhammad R. Bilad, Mohd D. H.Wirzal, Lila Balasubramaniam, Anis S. Ishak, and Sawin Kaur Ranjit Singh

5.1 Introduction 97

5.2 Membrane Electrocoagulation Flocculation for Dye Removal 99

5.3 Carbonation Bioreactor for Microalgae Cultivation 102

5.4 Forward Osmosis and Electrolysis for Energy Storage and Treatment of Emerging Pollutant 107

5.5 Conclusions and Future Perspective 111

References 113

6 Design of Internally Heat-Integrated Distillation Column (HIDiC) 117
Vasu Harvindran and Dominic C. Y. Foo

6.1 Introduction 117

6.2 Example and Conceptual Design of Conventional Column 119

6.3 Basic Design of HIDiC 120

6.4 Complete Design of HIDiC 122

6.4.1 Top-Integrated Column 122

6.4.2 Bottom-Integrated Column 123

6.4.3 Geometrical Analysis for Heat Panels 124

6.5 Energy Savings and Economic Evaluation 126

6.6 Concluding Thoughts 128

References 128

7 Graphical Analysis and Integration of Heat Exchanger Networks with Heat Pumps 131
Minbo Yang and Xiao Feng

7.1 Introduction 131

7.2 Influences of Heat Pumps on HENs 132

7.2.1 Case 1 133

7.2.2 Case 2 134

7.2.3 Case 3 134

7.2.4 Case 4 135

7.2.5 Case 5 136

7.2.6 Case 6 136

7.2.7 Case 7 136

7.3 Integration of Heat Pump Assisted Distillation in the Overall Process 138

7.3.1 Increase of Pinch Temperature 138

7.3.2 Decrease of Pinch Temperature 140

7.3.3 No Change in Pinch Temperature 141

7.3.4 Heat Pump Placement 142

7.4 Case Study 145

7.5 Conclusion 148

References 148

8 Insightful Analysis and Integration of Reactor and Heat Exchanger Network 151
Di Zhang, Guilian Liu, and Xiao Feng

8.1 Introduction 151

8.2 Influence of Temperature Variation on HEN 152

8.2.1 Location of Cold and Hot Streams 152

8.2.2 Effect of Temperature Variation 153

8.3 Relation Among Reactor Parameters 156

8.3.1 Relation Among Temperatures, Selectivity, and Conversion of Reactor 157

8.3.1.1 CSTR 159

8.3.1.2 PFR 159

8.3.2 Reactor Characteristic Diagram 160

8.4 Coupling Optimization of HEN and Reactor 161

8.5 Case Study 163

8.6 Conclusions 165

References 166

9 Fouling Mitigation in Heat Exchanger Network Through Process Optimization 167
Yufei Wang and Xiao Feng

9.1 Introduction 167

9.2 Operation Parameter Optimization for Fouling Mitigation in HENs 169

9.2.1 Description on Velocity Optimization 169

9.2.2 Fouling Threshold Model 171

9.2.3 Heat Transfer Related Models 172

9.2.4 Pressure Drop Related Models 174

9.3 Optimization of Cleaning Schedule 175

9.4 Application of Backup Heat Exchangers 175

9.5 Optimization Constraints and Objective Function 176

9.5.1 Optimization Constraints 176

9.5.2 Objective Function 177

9.5.3 Optimization Algorithm 178

9.6 Case Studies 178

9.6.1 Case Study 1: Consideration of Velocity Optimization Alone 178

9.6.1.1 Optimization Results 180

9.6.2 Case Study 2: Simultaneous Consideration of Velocity and Cleaning Schedule Optimization 186

9.6.2.1 Constraints for Case Study 188

9.6.2.2 Results and Discussion 189

9.6.2.3 Considering Backup Heat Exchanger 194

9.7 Conclusion 194

Acknowledgments 196

References 198

10 Decomposition and Implementation of Large-Scale Interplant Heat Integration 201
Runrun Song, Xiao Feng, Mahmoud M. El-Halwagi, and Yufei Wang

10.1 Introduction 201

10.1.1 Reviews and Discussions for Stream Selection 202

10.1.2 Reviews and Discussions for Plant Selection 204

10.1.3 Reviews and Discussions for Plant Integration 204

10.2 Methodology 205

10.2.1 Strategy 1 – Overview 205

10.2.2 Identification of Heat Sources/Sinks for IPHI from Individual Plants 206

10.2.3 Decomposition of a Large-Scale IPHI Problem into Small-Scale Subsections 207

10.2.4 Strategy 2 for Indirect IPHI 209

10.3 Case Study 212

10.3.1 Example 1 212

10.3.2 Example 2 215

10.4 Conclusion 217

References 218

11 Multi-objective Optimisation of Integrated Heat, Mass and Regeneration Networks with Renewables Considering Economics and Environmental Impact 221
So-Mang Kim, Adeniyi J. Isafiade, and Michael Short

11.1 Introduction 221

11.2 Literature Review 222

11.2.1 Regeneration in Process Synthesis 222

11.2.2 The Analogy of MEN and REN 222

11.2.3 Combined Heat and Mass Exchange Networks (CHAMENs) 224

11.3 Environmental Impact in Process Synthesis 225

11.3.1 Life Cycle Assessment 225

11.4 The Synthesis Method and Model Formulation 226

11.4.1 Synthesis Approach 227

11.4.2 Assumptions 229

11.4.3 MINLP Model Formulation 230

11.4.3.1 HENS Model Equations 230

11.4.3.2 MEN and REN Model Equations 233

11.4.3.3 The Combined Economic Objective Function 236

11.4.3.4 Initializations and Convergence 239

11.5 Case Study 240

11.5.1 H2S Removal 240

11.5.1.1 Synthesis of MEN (The First Step) 242

11.5.1.2 Simultaneous Synthesis of MEN and REN (The Second Step) 243

11.5.1.3 Simultaneous Synthesis of MEN, REN, and HEN (The Third Step) 244

11.5.1.4 Absorption and Regeneration Temperature Optimization 247

11.5.1.5 The Synthesis of Combined Model Using MOO 252

11.6 Conclusions and Future Works 254

References 256

12 Optimization of Integrated Water and Multi-regenerator Membrane Systems Involving Multi-contaminants: A Water-Energy Nexus Aspect 261
Musah Abass and Thokozani Majozi

12.1 Introduction 261

12.2 Problem Statement 263

12.3 Model Formulation 263

12.3.1 Material Balances for Sources 264

12.3.2 Mass and Contaminants Balances for Regeneration Units 265

12.3.3 Mass and Contaminant Balances for Permeate and Reject Streams 265

12.3.4 Mass and Contaminant Balances for Sinks 266

12.3.5 Modeling of the Regeneration Units 266

12.3.5.1 Performance of Regeneration Units 266

12.3.6 Logical Constraints 267

12.3.7 The Objective Function 267

12.4 Illustrative Example 268

12.5 Conclusion 272

Acknowledgments 272

12.A Appendix: Detailed Models for the ED and RO Modules 273

Nomenclature 280

References 282

13 Optimization Strategies for Integrating and Intensifying Housing Complexes 285
Jesús M. Núñez-López, and JoséM. Ponce-Ortega

13.1 Introduction 285

13.2 Methods 288

13.2.1 Total Annual Cost for the Integrated System 289

13.2.2 FreshWater Consumption 289

13.2.3 GHGE Emissions 290

13.2.4 Environmental Impact 290

13.2.5 Sustainability Return of Investment 293

13.2.6 Process Route Healthiness Index 293

13.2.7 Multistakeholder Approach 295

13.3 Case Study 295

13.4 Results 296

13.5 Conclusions 296

References 299

14 Sustainable Biomass Conversion Process Assessment 301
Eric C. D. Tan

14.1 Introduction 301

14.2 Methodology and Assumptions 302

14.3 Results and Discussion 305

14.3.1 Environmental Indicators 305

14.3.2 Energy Indicators 310

14.3.3 Efficiency Indicators 312

14.3.4 Economic Indicators 313

14.4 Conclusions 314

Acknowledgments 316

References 317

Index 319


Dominic Foo, PhD, is a Professor of Process Design and Integration at the University of Nottingham Malaysia Campus, and is the Founding Director for the Centre of Excellence for Green Technologies. He is also a Fellow of the Institution of Chemical Engineers (IChemE), a Chartered Engineer with the UK Engineering Council, and a Professional Engineer with the Board of Engineer Malaysia (BEM).

Mahmoud El-Halwagi, PhD, is the McFerrin Professor at Artie McFerrin Department of Chemical Engineering, Texas A&M University and the Managing Director of the Texas A&M Engineering Experiment Station’s Gas and Fuel Research Center.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.