Ferziger / Zweifel / Dunworth | The Theory of Neutron Slowing Down in Nuclear Reactors | E-Book | sack.de
E-Book

E-Book, Englisch, 320 Seiten, Web PDF

Ferziger / Zweifel / Dunworth The Theory of Neutron Slowing Down in Nuclear Reactors

International Series of Monographs in Nuclear Energy
1. Auflage 2013
ISBN: 978-1-4831-5499-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

International Series of Monographs in Nuclear Energy

E-Book, Englisch, 320 Seiten, Web PDF

ISBN: 978-1-4831-5499-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems of neutron moderation and their importance in all types of reactors. An asymptotic reactor model is described, and the calculation of the elastic scattering frequency is explained. Subsequent chapters focus on the process of slowing down in finite and infinite medium by analyzing capture by individual resonances; resonance integrals in heterogeneous systems; the slowing-down kernels; the spherical harmonics method; statistical methods; and small source theory. The final chapter presents numerical solutions of the Boltzmann equation and covers topics such as the multigroup approach, group constants, and solution of the multigroup equations. This book will be a useful resource for nuclear physicists and engineers.

Ferziger / Zweifel / Dunworth The Theory of Neutron Slowing Down in Nuclear Reactors jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;The Theory of Neutron Slowing Down in Nuclear Reactors;4
3;Copyright Page;5
4;Table of Contents;8
5;PREFACE;10
6;CHAPTER 1. SLOWING DOWN AND REACTOR CRITICALITY;12
6.1;A. The Role of Slowing Down;12
6.2;B. The Mathematical Description of the Neutron Density in a Reactor;18
6.3;C. Asymptotic Reactor Theory;36
6.4;D. Calculation of the Elastic Scattering Frequency;55
6.5;E. Evaluation and Significance of the Transformation Matrices;68
7;CHAPTER 2. SLOWING DOWN IN AN INFINITE MEDIUM;75
7.1;A. Introductory Remarks;75
7.2;B. Slowing Down in Hydrogeneous Media;76
7.3;C. Slowing Down in Media Containing Heavy Elements: I. Non-absorbing Media;80
7.4;D. Slowing Down in Media Containing Heavy Elements: II. Absorbing Media;93
7.5;E. Capture by Individual Resonances;103
7.6;F. Calculation of Resonance Integrals;113
7.7;G. Resonance Integrals in Heterogeneous Systems;121
8;CHAPTER 3. SLOWING DOWN IN FINITE MEDIA;137
8.1;A. The Slowing-down Kernels;137
8.2;B. The Spherical Harmonics Method;143
8.3;C. The P1 Approximation;154
8.4;D. Methods Related to the PL Approximations;185
8.5;E. Other Approximations to the Boltzmann Equation;201
8.6;F. Statistical Methods;205
8.7;G. Small Source Theory;212
8.8;H. Comparison of Results with Experiment;216
9;CHAPTER 4. NUMERICAL SOLUTIONS OF THE BOLTZMANN EQUATION;223
9.1;A. The Multigroup Approach;223
9.2;B. Simple Applications of the Method;241
9.3;C. Group Constants;246
9.4;D. Solution of the Multigroup Equations;257
10;APPENDIX;287
10.1;APPENDIX A: TIME DEPENDENT ASYMPTOTIC REACTOR THEORY;287
10.2;APPENDIX B: VECTOR IDENTITIES;291
10.3;APPENDIX C: THE VALIDITY OF ASYMPTOTIC REACTOR THEORY;294
10.4;APPENDIX D: EXTENSIONS OF ASYMPTOTIC REACTOR THEORY;299
10.5;APPENDIX E: IMPROVEMENTS IN CRITICALITY CALCULATIONS;303
10.6;APPENDIX F: EQUIVALENCE OF THE BL AND PL APPROXIMATIONS;306
11;INDEX;310
12;OTHER TITLES IN THE SERIES;320



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.