Buch, Englisch, Band 19, 204 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 506 g
Reihe: SEMA SIMAI Springer Series
With Applications to Finance
Buch, Englisch, Band 19, 204 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 506 g
Reihe: SEMA SIMAI Springer Series
ISBN: 978-3-030-16644-1
Verlag: Springer International Publishing
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts.
In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithmsfor properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes.
This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Mathematische Modellierung
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Topologie
- Mathematik | Informatik Mathematik Mathematische Analysis Integralrechnungen- und -gleichungen
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
Weitere Infos & Material
1 Mathematical background.- 2 Box dimension type models.- 3 A middle definition between Hausdorff and box dimensions.- 4 Hausdorff dimension type models for fractal structures.