Buch, Englisch, 217 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 339 g
Buch, Englisch, 217 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 339 g
ISBN: 978-1-032-26338-0
Verlag: CRC Press
This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem. It begins with a general background of the theorem, proves the famous Liouville–Arnold theorem for integrable systems and introduces Kneser’s tori in four-dimensional phase space. It then introduces and discusses the ideas and techniques used in Arnold’s proof, before the second half of the book walks the reader through a detailed account of Arnold’s proof with all the required steps. It will be a useful guide for advanced students of mathematical physics, in addition to researchers and professionals.
Features
• Applies concepts and theorems from real and complex analysis (e.g., Fourier series and implicit function theorem) and topology in the framework of this key theorem from mathematical physics.
• Covers all aspects of Arnold’s proof, including those often left out in more general or simplifi ed presentations.
• Discusses in detail the ideas used in the proof of the KAM theorem and puts them in historical context (e.g., mapping degree from algebraic topology).
Zielgruppe
Academic, Postgraduate, Professional, and Undergraduate Advanced
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
Weitere Infos & Material
Chapter 1. Hamilton Theory
Chapter 2. Preliminaries
Chapter 3. Outline of the KAM Proof
Chapter 4. Proof of the KAM Theorem
Chapter 5. Analytic Lemmas
Chapter 6. Geometric Lemmas
Chapter 7. Convergence Lemmas
Chapter 8. Arithmetic Lemmas