Fattore | Cannabinoids in Neurologic and Mental Disease | E-Book | sack.de
E-Book

E-Book, Englisch, 496 Seiten

Fattore Cannabinoids in Neurologic and Mental Disease

E-Book, Englisch, 496 Seiten

ISBN: 978-0-12-417124-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The application of cannabis sativa for the treatment of neurologic and mental disease is expanding. Cannabinoids in Neurologic and Mental Disease collects and presents for the first time recent research involving the use of pharmacological cannabinoids for the treatment of neurodegenerative and neuroinflammatory disease. The neurologic application of cannabinoid therapy builds upon psychiatric and psychological use for the treatment of a variety of core mental disorders. This comprehensive reference on the known uses of cannabinoids will be useful for clinical neurologists, neuroscience and clinical neuroscience researchers, clinical psychologists and psychiatrists and the general medical community. - A comprehensive reference on the clinical uses of cannabinoids for treating major neurologic and mental diseases - Detailed coverage of cannabinoid use for neuroinflammatory and neurodegenerative disease including Multiple Sclerosis, Epilepsy, Huntington's disease, Parkinson's disease, and Alzheimer's disease - Detailed coverage of cannabinoid use for major psychiatric and psychological diseases and disorders including schizophrenia, bipolar disorders, Tourette's syndrome, and post-traumatic stress disorder (PTSD)
Fattore Cannabinoids in Neurologic and Mental Disease jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Cannabinoids in Neurologic and Mental Disease;4
3;Copyright Page;5
4;Contents;6
5;Preface;16
6;List of Contributors;18
7;The ever-expanding world of the endocannabinoids: A concise introduction;24
7.1;The Endocannabinoid System: Discovery and Early Definitions;24
7.1.1;Cannabinoids;25
7.1.2;Cannabinoid Receptors;25
7.1.3;Endocannabinoids;27
7.1.4;Specific and Less Specific Metabolic Routes and Trafficking Mechanisms for Endocannabinoids;28
7.2;Redundancy and Complexity in Endocannabinoid Targets and Metabolic Enzymes;31
7.3;Endocannabinoid-Related Mediators and their Targets;33
7.4;Conclusions: the “Endocannabinoidome” and How to Manage it;34
7.5;References;36
8;1 Role of the endocannabinoids in neuroinflammatory and neurodegenerative disorders;46
8.1;1 Cannabinoids for the treatment of neuroinflammation;48
8.1.1;Neuroinflammation;48
8.1.2;Endocannabinoid System Elements in Glial Cells;49
8.1.3;Glial Functions and Their Modulation by Cannabinoids;51
8.1.3.1;Astrocyte Functions;51
8.1.3.2;Microglial Functions;52
8.1.3.2.1;Production and release of cytotoxic molecules;52
8.1.3.2.2;Migration;53
8.1.3.2.3;Proliferation and phagocytosis;54
8.1.4;Concluding Remarks;55
8.1.5;Acknowledgments;56
8.1.6;References;56
8.2;2 Endocannabinoids and Alzheimer’s disease;60
8.2.1;Introduction;60
8.2.2;Alzheimer’s Disease;61
8.2.3;The Endocannabinoid System as a Therapeutic Target;63
8.2.4;The Endocannabinoid System in Alzheimer’s Disease;63
8.2.4.1;Cannabinoids and Neuroinflammation;65
8.2.4.2;Cannabinoids and Oxidative Stress;68
8.2.4.3;Cannabinoids and Excitotoxicity;69
8.2.4.4;Cannabinoids and Neurogenesis;70
8.2.5;Conclusions;72
8.2.6;References;72
8.3;3 Cannabinoids in Parkinson’s disease;80
8.3.1;Parkinson’s Disease;80
8.3.2;The Endocannabinoid System in the Normal Basal Ganglia;81
8.3.3;Endocannabinoid System Dysregulation in PD;82
8.3.4;Clinical Trials of Cannabinoid Drugs in PD Patients;84
8.3.5;Potential of the Endocannabinoid System as a Target for Alleviation of Motor Symptoms;86
8.3.6;Potential of the Endocannabinoid System as a Target for Alleviation of Drug-Induced Side Effects;89
8.3.7;Potential of the Endocannabinoid System as a Disease Modifying Target;92
8.3.7.1;The Effect of Cannabinoid Drugs on a-Synucleinopathy;92
8.3.7.2;The Neuroprotective Potential of Cannabinoid Drugs;93
8.3.7.3;The Anti-Inflammatory Potential of Cannabinoid Drugs;96
8.3.8;Concluding Remarks;99
8.3.9;References;99
8.4;4 Cannabinoids and Huntington’s disease;106
8.4.1;The Endocannabinoid System;106
8.4.1.1;Components, Working Mechanism, and Distribution;106
8.4.1.2;Physiological Role of the ECS within the CNS;110
8.4.2;Endocannabinoid Signaling and Huntington’s Disease;112
8.4.2.1;Huntington’s Disease;112
8.4.2.2;The ECS and the Control of Motor Behavior;113
8.4.2.2.1;Endocannabinoids and CB1 receptors in basal ganglia structures;113
8.4.2.2.2;Functional interaction between ECS and dopamine in basal ganglia circuits;114
8.4.2.3;The ECS and Neuroinflammation;115
8.4.2.4;Alterations of the ECS in HD;116
8.4.3;Therapeutic Potential of Endocannabinoids in HD;116
8.4.3.1;Effects on Motor Symptoms;116
8.4.3.2;Effects on Pathogenesis;117
8.4.3.3;Future Perspectives and Needs;118
8.4.4;Relevance of Molecular Imaging of the ECS in HD;118
8.4.4.1;Imaging of the Brain CB1 Receptor;119
8.4.4.1.1;Currently available CB1 receptor radioligands for human CB1 receptor imaging: “second generation compounds”;119
8.4.4.1.1.1;[11C]JHU75528 or [11C]OMAR;119
8.4.4.1.1.2;[11C]MePPEP and [18F]FMPEP-d2;121
8.4.4.1.1.3;[18F]MK9470;122
8.4.4.2;Imaging of the Brain CB2 Receptor;123
8.4.4.2.1;Triaryl bis-sulfones;124
8.4.4.2.2;Indole derivate;126
8.4.4.2.3;Quinoline derivates;127
8.4.4.2.4;Thiozole derivates;128
8.4.5;PET Imaging of CB1 and CB2 Receptors in HD;128
8.4.6;General Conclusion;129
8.4.7;References;129
8.5;5 Endocannabinoids and amyotrophic lateral sclerosis;144
8.5.1;Amyotrophic Lateral Sclerosis;144
8.5.1.1;Epidemiological and Clinical Aspects;145
8.5.1.2;Neuropathological Aspects;148
8.5.1.2.1;Glutamate toxicity;149
8.5.1.2.2;Glial activation and local neuroinflammation;149
8.5.1.2.3;Oxidative stress;150
8.5.1.2.4;Defects in RNA transcription, processing, and stability;151
8.5.1.2.5;Protein deposition and aggregation;151
8.5.1.2.6;Mitochondrial dysfunction;152
8.5.1.2.7;Impairment in axonal transport;153
8.5.1.3;Treatments Approved and/or Under Investigation;153
8.5.2;Cannabinoids and ALS;155
8.5.2.1;Endocannabinoid Signaling in ALS;155
8.5.2.2;Treatments with Cannabinoids in Preclinical Models of ALS;157
8.5.2.3;Treatments with Cannabinoids in Clinical Studies with ALS Patients;159
8.5.3;Concluding Remarks and Future Perspectives;160
8.5.4;Acknowledgments;160
8.5.5;References;161
8.6;6 Endocannabinoids and epilepsy;170
8.6.1;Introduction;170
8.6.2;ECS Regulates Excitatory Neuronal Synaptic Transmission;172
8.6.3;Alterations in the ECS in Seizures and Epilepsy;175
8.6.3.1;Reorganization of CB1 Receptor Expression and Function in Pilocarpine-Induced Temporal Lobe Epilepsy;175
8.6.3.2;Other Experimental Findings;180
8.6.4;Alterations in the ECS in Human Temporal Lobe Epilepsy;182
8.6.4.1;Do Alterations in CB1 Receptors within the IML of the Dentate Gyrus Contribute to TLE?;183
8.6.5;Therapeutic Potential of Modulating the ECS in Seizures and Epilepsy;186
8.6.5.1;The Phytocannabinoids;186
8.6.5.2;Targeting CB1 Receptors in Seizures and Epilepsy;188
8.6.5.3;CB1 Receptor Agonists in Adjunctive AED Therapy;191
8.6.5.4;Targeting Endocannabinoid Degradation for Seizure Control;193
8.6.5.5;CB1 Receptor Antagonism as a Prophylactic Treatment for Seizures and Epilepsy;194
8.6.5.6;ECS Interaction with Other Brain Systems in Seizure and Epilepsy;196
8.6.5.7;Cannabinoid-Based Medicines: Implications for their Prolonged use in Clinical Seizures and Epilepsy;199
8.6.6;Conclusion and Future Directions;201
8.6.7;Acknowledgments;204
8.6.8;References;204
8.7;7 Endocannabinoids and migraine;218
8.7.1;Endocannabinoid System and Migraine;218
8.7.2;Migraine Pathogenesis;219
8.7.2.1;Cortical Spreading Depression;220
8.7.3;Endocannabinoids and Migraine;220
8.7.3.1;Clinical Data;220
8.7.3.2;Experimental Data;222
8.7.3.2.1;Studies with neurovascular models of migraine;222
8.7.3.2.1.1;Model of Nitroglycerin;222
8.7.3.2.1.2;Studies with Electrical Dural Stimulation and Cutaneous Facial Receptive Field Activation of the Ophthalmic Division of the...;224
8.7.3.2.2;Studies with vascular models of migraine;225
8.7.3.2.3;Effect of Cannabinoid Receptor Activation on Cortical Spreading Depression;225
8.7.4;Potential Sites and Mechanisms of Action of ECs;226
8.7.4.1;Effects on the Serotonin System;226
8.7.4.2;Effects on the NMDA/glutamate System;227
8.7.4.3;Effects on Inflammatory Molecules;227
8.7.5;Limitations;228
8.7.6;New Potential Therapeutic Approaches;228
8.7.6.1;Inhibitors of Catabolism;228
8.7.6.2;CB2 Receptor Agonists;228
8.7.7;Conclusions;229
8.7.8;References;229
9;2 Role of the endocannabinoids in psychological and psychiatric disorders;236
9.1;8 Cannabinoids and schizophrenia;238
9.1.1;Introduction;238
9.1.2;Endocannabinoid System and Schizophrenia;238
9.1.3;Cannabis and Schizophrenia;241
9.1.4;Cannabidiol and Schizophrenia;243
9.1.5;Conclusions;245
9.1.6;References;245
9.2;9 Cannabinoids and bipolar disorder;250
9.2.1;Introduction;250
9.2.2;Prevalence of Cannabis use in Bipolar Disorder;250
9.2.3;Clinical Correlates of Cannabis Use in Bipolar Disorder;252
9.2.3.1;Age at Onset;252
9.2.3.2;Course of Illness;255
9.2.3.2.1;Mood and psychotic symptoms;255
9.2.3.2.2;Sequence of onsets;257
9.2.3.2.3;Suicide;257
9.2.3.2.4;Comorbid disorders;257
9.2.3.2.5;Psychosocial functioning;258
9.2.4;Cannabis Use and Neurocognition in Bipolar Disorder;258
9.2.4.1;Cannabis and Cognition;258
9.2.4.2;Neurocognitive Deficits in Bipolar Disorder;260
9.2.4.3;Cannabis and Cognition in Bipolar Disorder;260
9.2.5;Impact on Diagnosis and Treatment;262
9.2.5.1;Diagnosis;262
9.2.5.2;Treatment;262
9.2.6;Conclusions;264
9.2.7;References;265
9.3;10 Cannabinoids and the Tourette syndrome;272
9.3.1;Tourette Syndrome;272
9.3.1.1;Definition and Clinic;272
9.3.1.2;Epidemiology, Genetics, and Pathology;273
9.3.1.3;Therapy;274
9.3.1.4;Alternative Treatments;275
9.3.2;Medicinal Use of Cannabinoid-Based Medicines;276
9.3.3;Effects of Cannabis Sativa L. in Patients with Tourette Syndrome;276
9.3.3.1;Case Reports;276
9.3.3.2;Results from a Prospective Survey;277
9.3.3.3;Controlled Trials;277
9.3.4;Effects of .9-Tetrahydrocannabinol in Patients with Tourette Syndrome;278
9.3.4.1;Uncontrolled Single-Case Studies;278
9.3.4.2;Randomized Controlled Trials Using THC;280
9.3.5;The Neurochemistry of Tourette Syndrome: Which Role Does the CB1 Receptor System Play?;282
9.3.6;Adverse Effects;283
9.3.7;Practical Aspects for the Treatment of Patients with TS with CBM;284
9.3.8;Conclusions;286
9.3.9;References;287
9.4;11 The role of endocannabinoid function in posttraumatic stress disorder: Modulating the risk phenotype and rendering effec...;292
9.4.1;Introduction;292
9.4.2;Overview of the Endocannabinoid System;293
9.4.3;Endocannabinoid Function in PTSD;294
9.4.3.1;Role of the Endocannabinoid System in Modulating Risk for PTSD;295
9.4.4;Negative Emotionality: A Key Role for Endocannabinoid Signaling in PTSD;296
9.4.5;An Emerging Focus on Reward Dysfunction in PTSD;300
9.4.6;PTSD and Externalizing: Endocannabinoid Function and Control;302
9.4.7;Experience-Dependent Changes in PTSD: Endocannabinoids and Synaptic Plasticity;304
9.4.8;Rendering Acute Trauma Into Symptoms: Animal Models of Fear;304
9.4.9;Long-Term Endocannabinoid Adaptations: The Legacy of Early Life Adversity;310
9.4.10;PTSD and Cannabis Use: Endocannabinoid Function in an Interdependent Trajectory;310
9.4.10.1;A Shared Diathesis;311
9.4.11;Self-Medicating with Cannabis;312
9.4.12;The Endocannabinoid System in the Treatment of PTSD: A Cautionary Tale;313
9.4.13;Future Directions;315
9.4.13.1;Etiologic Research;316
9.4.13.2;Therapeutic Implications;316
9.4.13.3;Policy and Law;317
9.4.14;References;317
9.5;12 Cannabinoids and drug addiction;334
9.5.1;Drug Abuse and Addiction;334
9.5.2;The Modulating Role of the Endocannabinoid System in Drug-Induced Reward;336
9.5.2.1;Associated Polymorphisms in the Cannabinoid CB1 Receptor (CNR1) and Fatty-acid Amide Hydrolase (FAAH) Genes;338
9.5.2.2;CB1 Receptor and FAAH Knockout Mice in Cannabinoid Addiction Research;338
9.5.3;The Endocannabinoid System in Human Drug Addiction;340
9.5.3.1;Cannabis;341
9.5.3.2;Alcohol;342
9.5.3.3;Nicotine;344
9.5.3.4;Cocaine;345
9.5.3.5;Amphetamines;346
9.5.3.6;Opioids;347
9.5.4;Conclusions;348
9.5.5;References;349
9.6;13 Cannabinoids and appetite (dys)regulation;360
9.6.1;Introduction;360
9.6.2;Early Clinical and Preclinical Evidence for Cannabis as a Modulator of Feeding;360
9.6.2.1;Alterations to Feeding Behavior Induced by .9-THC;362
9.6.2.2;Alterations to Feeding Induced by Cannabis Extracts or Individual Phytocannabinoids;364
9.6.3;The Role of Endogenous Cannabinoids in Feeding Behavior;367
9.6.4;Overview of Clinical Eating Disorders;369
9.6.4.1;Preclinical Research on Cannabinoids in EDs;370
9.6.4.2;Clinical Research on Cannabinoids in EDs;373
9.6.5;Neuroimaging of Reward and Cannabinoids;374
9.6.6;Conclusions;377
9.6.7;References;378
10;3 Role of the endocannabinoids in impulsive and compulsive disorders;386
10.1;14 The cannabinoid system and impulsive behavior;388
10.1.1;Background on Impulsivity;388
10.1.2;Cannabinoid Modulation of Human Impulsive Behavior;390
10.1.3;Translational Evidence for Cannabinoid Modulation of Impulsivity;394
10.1.4;Concluding Remarks;400
10.1.5;Acknowledgments;402
10.1.6;References;402
10.2;15 Cannabinoids and obsessive-compulsive disorder;410
10.2.1;Introduction;410
10.2.2;Neurobiology of OCD;411
10.2.2.1;Genetic and Other Predisposing Factors;411
10.2.2.2;Brain Structures Involved;411
10.2.2.3;Animal Models;412
10.2.3;Neurochemical Changes Associated with OCD;415
10.2.3.1;Serotonin (5-HT);415
10.2.3.2;Dopamine;417
10.2.3.3;Glutamate;417
10.2.3.4;GABA;418
10.2.3.5;Others;418
10.2.4;Endocannabinoid System in OCD;418
10.2.4.1;Localization of CB1 Receptor in the CSTC Circuitry;418
10.2.4.2;Role of the Endocannabinoid System in the Cortico-Striatal-Thalamic-Cortical Circuitry;419
10.2.5;The Effects of Drugs that Act on the Endocannabinoid System in OCD;420
10.2.5.1;Clinical Data;420
10.2.5.2;Preclinical Studies;421
10.2.6;Conclusions;423
10.2.7;Acknowledgments;423
10.2.8;References;423
10.3;16 The endocannabinoid system: Anorexia nervosa and binge eating disorder;434
10.3.1;Introduction;434
10.3.2;Eating Disorders;434
10.3.2.1;Etiology of EDs;435
10.3.3;Implication of the Endocannabinoid System in Food Intake Regulation;436
10.3.3.1;The Endocannabinoid System and the Homeostatic Regulation of Food Intake;438
10.3.3.2;The Endocannabinoid System and the Hedonic Regulation of Food Intake;440
10.3.4;Implication of the Endocannabinoid System in AN and BED;441
10.3.4.1;Human Studies;442
10.3.4.2;Animal Studies;443
10.3.4.2.1;Animal models of AN and BED;443
10.3.4.2.2;Preclinical studies;444
10.3.5;Conclusions;447
10.3.6;References;448
10.4;17 The endocannabinoid system and trichotillomania: A promising target for treatment?;460
10.4.1;Introduction to Trichotillomania;460
10.4.2;The Cannabinoid System in Tourette’s Syndrome and OCD;462
10.4.3;Neuroimaging in Trichotillomania;463
10.4.4;The Cannabinoid System and Trichotillomania;464
10.4.5;Conclusions;465
10.4.6;References;466
10.5;18 Future perspectives: Cannabinoid CB2 receptor ligands and their therapeutic potential in mental diseases;470
10.5.1;Framework on the Molecular Basis for the Therapeutic Potential of Cannabinoids;470
10.5.2;CB2 Cannabinoid Receptors as a Potential Therapeutic Target in Neurological and Mental Diseases;475
10.5.3;Summary of the Role of Endocannabinoids in Neuroinflammatory and Neurodegenerative Disorders;479
10.5.4;Summary of the Role of Endocannabinoids in Psychological and Psychiatric Disorders;480
10.5.5;Summary of the Role of Endocannabinoids in Impulsive and Compulsive Disorders;481
10.5.6;References;482
11;Index;490


List of Contributors
Sherif Abdelmessih Center for Treatment and Research of Bipolar Disorder, The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, USA Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, USA Fordham University, Bronx, NY, USA Rawaha Ahmad,     Division of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium Robert E. Blair,     Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA Raphael J. Braga Center for Treatment and Research of Bipolar Disorder, The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, USA Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, USA Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA Veronica A. Campbell,     Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity College, Dublin, Ireland Plinio C. Casarotto,     Department of Pharmacology, Medical School of Ribeirão Preto and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Ribeirão Preto, SP, Brazil Cindy Casteels Division of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium Samuel R. Chamberlain,     Department of Psychiatry, University of Cambridge, Cambridge, UK and Cambridge and Peterborough NHS Foundation Trust, Fulbourn, Cambridge, UK Kwang H. Choi,     Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, MD, USA Ruth Concannon,     Pharmacology & Therapeutics and NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland Maria L. de Ceballos,     Neurodegeneration Group, Department of Cellular, Molecular and Developmental Neurobiology and CIBERNED, Cajal Institute, CSIC, Madrid, Spain Eva de Lago Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain Maria Antonietta De Luca Department of Biomedical Science, Neuropsychopharmacology Section, University of Cagliari, Italy National Institute of Neuroscience, University of Cagliari, Italy Robert J. DeLorenzo,     Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA Laxmikant S. Deshpande,     Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA Eilís Dowd,     Pharmacology & Therapeutics and NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland Francisco Espejo-Porras Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain Paola Fadda Centre of Excellence “Neurobiology of Dependence,” University of Cagliari, Italy Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy National Institute of Neuroscience, University of Cagliari, Italy Steven G. Fagan,     Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity College, Dublin, Ireland Liana Fattore,     CNR Neuroscience Institute – Cagliari, National Research Council of Italy, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy Javier Fernández-Ruiz Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain David P. Finn,     Pharmacology & Therapeutics and NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland Walter Fratta Centre of Excellence “Neurobiology of Dependence,” University of Cagliari, Italy Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy National Institute of Neuroscience, University of Cagliari, Italy Frances H. Gabbay,     Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, MD, USA Felipe V. Gomes,     Department of Pharmacology, Medical School of Ribeirão Preto and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Ribeirão Preto, SP, Brazil Jon E. Grant,     Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA Rosaria Greco,     Headache Science Centre, C. Mondino National Neurological Institute, Pavia, Italy Francisco S. Guimarães,     Department of Pharmacology, Medical School of Ribeirão Preto and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Ribeirão Preto, SP, Brazil Hiroki Ishiguro,     Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Japan F. Markus Leweke,     Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany Qing-Rong Liu,     Intramural Research Program, National Institute on Drug Abuse/National Institutes of Health, Baltimore, MD, USA Anil Malhotra Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, USA Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA Vincenzo Di Marzo,     Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy Ciara McCabe,     School of Psychology and Clinical Language Sciences, University of Reading, Whiteknights, Reading, UK Miguel Moreno-Martet Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain Kirsten R. Müller-Vahl,     Clinic for Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany Brian L. Odlaug,     Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Emmanuel S. Onaivi,     Department of Biology, William Paterson University, Wayne, NJ, USA Tommy Pattij,     Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands Fabiana...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.