Fabozzi / Kolm / Pachamanova | Robust Portfolio Optimization and Management | Buch | 978-0-471-92122-6 | sack.de

Buch, Englisch, 512 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 887 g

Fabozzi / Kolm / Pachamanova

Robust Portfolio Optimization and Management


1. Auflage 2007
ISBN: 978-0-471-92122-6
Verlag: Wiley

Buch, Englisch, 512 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 887 g

ISBN: 978-0-471-92122-6
Verlag: Wiley


Praise for Robust Portfolio Optimization and Management

"In the half century since Harry Markowitz introduced his elegant theory for selecting portfolios, investors and scholars have extended and refined its application to a wide range of real-world problems, culminating in the contents of this masterful book. Fabozzi, Kolm, Pachamanova, and Focardi deserve high praise for producing a technically rigorous yet remarkably accessible guide to the latest advances in portfolio construction."
--Mark Kritzman, President and CEO, Windham Capital Management, LLC

"The topic of robust optimization (RO) has become 'hot' over the past several years, especially in real-world financial applications. This interest has been sparked, in part, by practitioners who implemented classical portfolio models for asset allocation without considering estimation and model robustness a part of their overall allocation methodology, and experienced poor performance. Anyone interested in these developments ought to own a copy of this book. The authors cover the recent developments of the RO area in an intuitive, easy-to-read manner, provide numerous examples, and discuss practical considerations. I highly recommend this book to finance professionals and students alike."
--John M. Mulvey, Professor of Operations Research and Financial Engineering, Princeton University

Fabozzi / Kolm / Pachamanova Robust Portfolio Optimization and Management jetzt bestellen!

Weitere Infos & Material


Preface xi

About the Authors xv

Chapter 1

Introduction 1

Quantitative Techniques in the Investment Management Industry 1

Central Themes of This Book 9

Overview of This Book 12

Part One Portfolio Allocation: Classical Theory and Extensions 15

Chapter 2

Mean-Variance Analysis and Modern Portfolio Theory 17

The Benefits of Diversification 18

Mean-Variance Analysis: Overview 21

Classical Framework for Mean-Variance Optimization 24

The Capital Market Line 35

Selection of the Optimal Portfolio When There Is a Risk-Free Asset 41

More on Utility Functions: A General Framework for Portfolio Choice 45

Summary 50

Chapter 3

Advances in the Theory of Portfolio Risk Measures 53

Dispersion and Downside Measures 54

Portfolio Selection with Higher Moments through Expansions of Utility 70

Polynomial Goal Programming for Portfolio Optimization with Higher Moments 78

Some Remarks on the Estimation of Higher Moments 80

The Approach of Malevergne and Sornette 81

Summary 86

Chapter 4

Portfolio Selection in Practice 87

Portfolio Constraints Commonly Used in Practice 88

Incorporating Transaction Costs in Asset-Allocation Models 101

Multiaccount Optimization 106

Summary 111

Part Two Robust Parameter Estimation 113

Chapter 5

Classical Asset Pricing 115

Definitions 115

Theoretical and Econometric Models 117

Random Walk Models 118

General Equilibrium Theories 131

Capital Asset Pricing Model (CAPM) 132

Arbitrage Pricing Theory (APT) 136

Summary 137

Chapter 6

Forecasting Expected Return and Risk 139

Dividend Discount and Residual Income Valuation Models 140

The Sample Mean and Covariance Estimators 146

Random Matrices 157

Arbitrage Pricing Theory and Factor Models 160

Factor Models in Practice 168

Other Approaches to Volatility Estimation 172

Application to Investment Strategies and Proprietary Trading 176

Summary 177

Chapter 7

Robust Estimation 179

The Intuition behind Robust Statistics 179

Robust Statistics 181

Robust Estimators of Regressions 192

Confidence Intervals 200

Summary 206

Chapter 8

Robust Frameworks for Estimation: Shrinkage, Bayesian Approaches, and the Black-Litterman Model 207

Practical Problems Encountered in Mean-Variance Optimization 208

Shrinkage Estimation 215

Bayesian Approaches 229

Summary 253

Part Three Optimization Techniques 255

Chapter 9

Mathematical and Numerical Optimization 257

Mathematical Programming 258

Necessary Conditions for Optimality for Continuous Optimization Problems 267

Optimization Duality Theory 269

How Do Optimization Algorithms Work? 272

Summary 288

Chapter 10

Optimization under Uncertainty 291

Stochastic Programming 293

Dynamic Programming 308

Robust Optimization 312

Summary 332

Chapter 11

Implementing and Solving Optimization Problems in Practice 333

Optimization Software 333

Practical Considerations When Using Optimization Software 340

Implementation Examples 346

Specialized Software for Optimization Under Uncertainty 358

Summary 360

Part Four Robust Portfolio Optimization 361

Chapter 12

Robust Modeling of Uncertain Parameters in Classical Mean-Variance Portfolio Optimization 363

Portfolio Resampling Techniques 364

Robust Portfolio Allocation 367

Some Practical Remarks on Robust Portfolio Allocation Models 392

Summary 393

Chapter 13

The Practice of Robust Portfolio Management: Recent Trends and New Directions 395

Some Issues in Robust Asset Allocation 396

Portfolio Rebalancing 410

Understanding and Modeling Transaction Costs 413

Rebalancing Using an Optimizer 422

Summary 435

Chapter 14

Quantitative Investment Management Today and Tomorrow 439

Using Derivatives in Portfolio Management 440

Currency Management 442

Benchmarks 445

Quantitative Return-Forecasting Techniques and Model-Based Trading Strategies 447

Trade Execution and Algorithmic Trading 456

Summary 460

Appendix A Data Description: The MSCI World Index 463

Index 473


Frank J. Fabozzi, PhD, CFA, is Professor in the Practice of Finance at Yale University's School of Management and the Editor of the Journal of Portfolio Management.
Petter N. Kolm, PhD, is a graduate student in finance at the Yale School of Management and a financial consultant in New York City. He previously worked at Goldman Sachs asset management where he developed quantitative investment models and strategies.

Dessislava A. Pachamanova, PhD, is an Assistant Professor of Operations Research at?Babson College. Her experience also includes work for Goldman Sachs and WestLB, and teaching management science, probability, statistics, and financial mathematics at MIT and Princeton University.

Sergio M. Focardi is a founding partner of the Paris-based consulting firm, The Intertek Group.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.