Buch, Englisch, Band 8, 403 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g
Reihe: Operations Research/Computer Science Interfaces Series
Models, Algorithms and Applications
Buch, Englisch, Band 8, 403 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g
Reihe: Operations Research/Computer Science Interfaces Series
ISBN: 978-1-4613-7794-8
Verlag: Springer US
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Wirtschaftswissenschaften Betriebswirtschaft Management Entscheidungsfindung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
I Invited Papers.- 1 N-Tuple Neural Networks.- 2 Information Geometry Of Neural Networks —An Overview—.- 3 Q-Learning: A Tutorial and Extensions.- 4 Are There Universal Principles of Brain Computation?.- 5 On-Line Training of Memory-Driven Attractor Networks.- 6 Mathematical Problems Arising From Constructing An Artificial Brain.- II Submitted Papers.- 7 The Successful Use of Probability Data in Connectionist Models.- 8 Weighted Mixture Of Models For On-Line Learning.- 9 Local Modifications to Radial Basis Networks.- 10 A Statistical Analysis of the Modified Nlms Rules.- 11 Finite Size Effects in on-Line Learning of Multi-Layer Neural Networks.- 12 Constant Fan-In Digital Neural Networks are Vlsi-Optimal.- 13 The Application Of Binary Encoded 2nd Differential Spectrometry in Preprocessing of Uv-Vis Absorption Spectral Data.- 14 A Non-Equidistant Elastic Net Algorithm.- 15 Unimodal Loading Problems.- 16 On The Use of Simple Classifiers for the Initialisation of One-Hidden-Layer Neural Nets.- 17 Modelling Conditional Probability Distributions for Periodic Variables.- 18 Integro-Differential Equations in Compartmental Model Neurodynamics.- 19 Nonlinear Models For Neural Networks.- 20 A Neural Network for The Travelling Salesman Problem with a Well Behaved Energy function.- 21 Semiparametric Artificial Neural Networks.- 22 An Event-Space Feedforward Network Using Maximum Entropy Partitioning with Application to Low Level Speech Data.- 23 Approximating the Bayesian Decision Boundary for Channel Equalisation Using Subset Radial Basis Function Network.- 24 Applications of Graph Theory to the Design of Neural Networks for Automated Fingerprint Identification.- 25 Zero Dynamics And Relative Degree Of Dynamic Recurrent Neural Networks.- 26 Irregular Sampling Approach toNeurocontrol: The Band-And Space-Limited Functions Questions.- 27 Unsupervised Learning of Temporal Constancies by Pyramidal-Type Neurons.- 28 Numerical Aspects of Machine Learning in Artificial Neural Networks.- 29 Learning Algorithms for Ram-Based Neural Networks.- 30 Analysis Of Correlation Matrix Memory and Partial Match-Implications for Cognitive Psychology.- 31 Regularization and Realizability in Radial Basis Function Networks.- 32 A Universal Approximator Network for Learning Conditional Probability Densities.- 33 Convergence af a Class of Neural Networks.- 34 Applications of the Compartmental Model Neuron to Time Series Analysis.- 35 Information Theoretic Neural Networks For Contextually Guided Unsupervised Learning.- 36 Convergence in Noisy Training.- 37 Non-Linear Learning Dynamics with a Diffusing Messenger.- 38 A Variational Approach to Associative Memory.- 39 Transformation of Nonlinear Programming Problems Into Separable Ones Using Multilayer Neural Networks.- 40 A Theory of Self-Organising Neural Networks.- 41 Neural Network Supervised Training Based on a Dimension Reducing Method.- 42 A Training Method for Discrete Multilayer Neural Networks.- 43 Local Minimal Realisations of Trained Hopfield Networks.- 44 Data Dependent Hyperparameter Assignment.- 45 Training Radial Basis Function Networks by Using Separable and Orthogonalized Gaussians.- 46 Error Bounds for Density Estimation by Mixtures.- 47 On Smooth Activation Functions.- 48 Generalisation and Regularisation by Gaussian Filter Convolution of Radial Basis Function Networks.- 49 Dynamical System Prediction: A Lie Algebraic Approach for a Novel Neural Architecture.- 50 Stochastic Neurodynamics and the System Size Expansion.- 51 An Upper Bound on the Bayesian Error Bars for Generalized Linear Regression.- 52 Capacity Bounds for Structured Neural Network Architectures.- 53 On-Line Learning In Multilayer Neural Networks.- 54 Spontaneous Dynamics and Associative Learning in an Assymetric Recurrent Random Neural Network.- 55 A Statistical Mechanics Analysis of Genetic Algorithms for Search and Learning.- 56 Volumes of Attraction Basins in Randomly Connected Boolean Networks.- 57 Evidential Rejection Strategy for Neural Network Classifiers.- 58 Dynamics Approximation and Change Point Retrieval from a Neural Network Model.- 59 Query Learning for Maximum Information Gain in a Multi-Layer Neural Network.- 60 Shift, Rotation and Scale Invariant Signatures for Two-Dimensional Contours, in a Neural Network Architecture.- 61 Function Approximation by Three-Layer Artificial Neural Networks.- 62 Neural Network Versus Statistical Clustering Techniques: A Pilot Study in a Phoneme Recognition Task.- 63 Multispectral Image Analysis Using Pulsed Coupled Neural Networks.- 64 Reasoning Neural Networks.- 65 Capacity of the Upstart Algorithm.- 66 Regression with Gaussian Processes.- 67 Stochastic Forward-Perturbation, Error Surface and Progressive Learning in Neural Networks.- 68 Dynamical Stability of a High-Dimensional Self-Organizing Map.- 69 Measurements of Generalisation Based on Information Geometry.- 70 Towards an Algebraic Theory of Neural Networks: Sequential Composition.