E-Book, Englisch, 226 Seiten
Dutta 3D Cell Culture:
1. Auflage 2018
ISBN: 978-1-351-37852-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: 0 - No protection
An Introductory Textbook
E-Book, Englisch, 226 Seiten
ISBN: 978-1-351-37852-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: 0 - No protection
3D cell culture is yet to be adopted and exploited to its full potential. It promises to upgrade and bring our understanding about human physiology to the highest level with the scope of applying the knowledge for better diagnosis as well as therapeutics. The focus of this book is on the direct impact of novel technologies and their evolution into viable products for the benefit of human race. It also describes the fundamentals of cell microenvironment to bring forth the relevance of 3D cell culture in tissue engineering and regenerative medicine. It discusses the extracellular matrix/microenvironment (ECM) and emphasizes its significance for growing cells in 3D to accomplish physiologically viable cell mass/tissue ex vivo. The book bridges the knowledge gaps between medical need and the technological applications through illustrations. It discusses the available models for 3D cell culture as well as the techniques to create substrates and scaffolds for achieving desired 3D microenvironment.
Zielgruppe
Researchers, postgraduates of medical biotechnology, medical fraternity and students, and technical entrepreneurs in the field of medical devices.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface
1. Introduction
1.1. Cell Culture: Historic Perspective
1.2. Cell Culture; 2D vs. 3D
References
2. Significance of Extracellular Matrix/Microenvironment (ECM)
2.1. Introduction
2.1.1. What is ECM?
2.1.2. Tissue Specificity of ECM
2.1.3. Representative Components of ECM
2.1.3.1. Collagen (structural)
2.1.3.2. Elastin (stretchable)
2.1.3.3. Microfibril-associated macromolecules (fibrillar)
(i) Microfibril-associated glycoproteins (MAGPs)
(ii) Fibrillin
(iii) Fibulins
(iv) Elastin–microfibril interface located proteins (EMILIN)
2.1.3.4. Laminin (adhesive)
2.1.3.5. Fibronectin (adhesive)
2.1.3.6. Matricelluar (antiadhesive)
2.1.3.7. Matrikines and Matricryptins
2.1.3.8. Proteoglycans
(i) Small Leucine-rich Proteoglycans (SLRP)
(ii) Modular Proteoglycans
(a) Nonhyaluronan binding
(b) Hyalectans
(iii) Cell-surface/transmembrane proteoglycans
(a) Syndecans
(b) Glypicans
2.1.3.9. Glycosaminoglycans (GAGs)
2.1.3.10. Hyaluronan (Hyaluronic acid)
2.2. Cell–Cell Interaction
2.3. Cell–Effecter Interaction
2.4. Cell–ECM Interaction
2.4.1. Protrusive Contacts
2.4.2. Contractile Contacts
2.4.3. Mechanically Supportive Contacts
2.5. ECM-Related Disorders
2.6. Conclusion (Classification, Interactions, and Implications)
References
3. ECM-Mimicking for 3D Cell Culture
3.1. Introduction
3.1.1. Significance of ECM Mimicking
3.1.2. ECM Mimicking/Reconstitution
3.1.2.1. Physical Shape and Morphology
3.1.2.2. Biochemical Attributes
3.1.2.3. Mechanical Strength and Elasticity
3.1.2.4. Organ Decellularization
3.1.3. Compatible Cell Types
3.2. Models for 3D Cell Culture
3.2.1. Spheroids
3.2.2. Hydrogels
3.2.3. Scaffolds and Matrices
3.3. Materials for 3D Cell Culture
3.3.1. Natural
3.3.2. Synthetic (Inorganic and Organic)
3.3.3. Hybrid
3.3.3.1. Physical blends
3.3.3.2. Chemical composites
3.4. Methods for Creating 3D Scaffold/Matrices
3.4.1. Conventional Methods
3.4.1.1. Extrusion
3.4.1.2. Compression molding with particle leaching
3.4.1.3. Injection molding
3.4.1.4. Thermally-induced phase transition/gas foaming
3.4.1.5. Fiber bonding and Microsphere sintering
3.4.1.6. Gel casting and freeze drying
3.4.1.7. Solvent casting/melt molding and particulate leaching
3.4.1.8. Micro-contact printing
3.4.2. Advanced Methods
3.4.2.1. Electrospinning
3.4.2.2. Rapid prototyping or solid free form fabrication
(i) Stereolithography/3D laser lithography
(ii) CAD-based 3D plotting
(iii) CAD-based 3D printing
(iv) 3D Fiber/Fused deposition
(v) Selective laser sintering(SLS)
3.4.2.3. Emulsion templating
3.4.2.4. Micromolding
3.4.2.5. Photoplating/photolithography
3.4.2.6. Designed self-assembly
3.5. Applications of ECM-mimicking 3D scaffolds
3.5.1. Research and Development
3.5.2. Diagnostics
3.5.3. Cell-Based Sensors
3.5.4. High-Throughput Screening
3.5.5. Biotech Industry
3.5.6. Drug Delivery
3.5.7. Biochemical Replacement
3.5.8. Tissue Engineering
3.5.8.1. Ex vivo Organ Model
3.5.8.2. Tissue Explants
3.5.8.3. In vivo Tissue Regeneration
3.5.9. Human-Organoid Models
References
4. Types of Scaffolds in Cell/Tissue Culture
4.1. Introduction
4.2. Non-specific in vitro 3D Culture
4.3. Tissue Engineering
4.4. Regenerative Medicine
4.4.1. In situ
4.4.2. Ex situ
4.5. Available Technologies
4.5.1. Matrigel
4.5.2. Alvetex (Re-innervate)
4.5.3. 3D Biotek
4.5.4. Algimatrix
4.5.5. Puramatrix
4.5.6. Integra
4.5.7. Primatrix
4.5.8. Hyalubrix/Hyalgan
4.5.9. Extracel
4.5.10. Mebiol
4.5.11. UpCell
4.5.12. BioVaSc-TERM®
4.5.13. Corgel TrelX/TrelXC
4.5.14. Opsite, Biobrane, and Oasis® Wound Matrix
4.5.15. Cytomatrix
4.5.16. Amniograft
4.5.17. Artiss/Tisseel
4.5.18. ECM analog
References
5. Future Trends/Challenges Ahead
6. Acknowledgement
7. Recommended Reading
8. Glossary