Buch, Englisch, 184 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1010 g
ISBN: 978-0-7923-8168-6
Verlag: Springer US
Recently, there has been a growing interest in optimization algorithms based on principles observed in nature, termed Evolutionary Algorithms (EAs).
presents the basic concepts of EAs, and considers the application of EAs in VLSI CAD. It is the first book to show how EAs could be used to improve IC design tools and processes. Several successful applications from different areas of circuit design, like logic synthesis, mapping and testing, are described in detail.
consists of two parts. The first part discusses basic principles of EAs and provides some easy-to-understand examples. Furthermore, a theoretical model for multi-objective optimization is presented. In the second part a software implementation of EAs is supplied together with detailed descriptions of several EA applications. These applications cover a wide range of VLSI CAD, and different methods for using EAs are described.
is intended for CAD developers and researchers as well as those working in evolutionary algorithms and techniques supporting modern design tools and processes.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Bauelemente, Schaltkreise
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Mikroprozessoren
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Technische Wissenschaften Technik Allgemein Konstruktionslehre und -technik
- Mathematik | Informatik EDV | Informatik Technische Informatik Systemverwaltung & Management
- Geisteswissenschaften Design Produktdesign, Industriedesign
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
Weitere Infos & Material
I Basic Principles.- 1 Introduction.- 2 Evolutionary Algorithms.- 3 Characteristics of Problem Instances.- 4 Performance Evaluation.- II Practice.- 5 Implementation.- 6 Applications of Eas.- 7 Heuristic Learning.- 8 Conclusions.- References.