E-Book, Englisch, 344 Seiten, E-Book
ISBN: 978-0-470-03199-5
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Autoren/Hrsg.
Weitere Infos & Material
Preface.
Notation.
1. A Mathematical Framework for Upscaling Operations.
1.1 Representative Elementary Volume (rev).
1.2 Averaging Operations.
1.3 Application to Balance Laws.
1.4 The Periodic Cell Assumption.
PART I: MODELING OF TRANSPORT PHENOMENA.
2. Micro(fluid)mechanics of Darcy's Law.
2.1 Darcy's Law.
2.2 Microscopic Derivation of Darcy's law.
2.3 Training Set: Upper and Lower Bounds of the Permeability ofa 2-D Microstructure.
2.4 Generalization: Periodic Homogenization Based on DoubleScale Expansion.
2.5 Interaction Between Fluid and Solid Phase.
2.6 Beyond Darcy's (Linear) Law.
2.7 Appendix: Convexity of _(d).
3. Micro-to-Macro Diffusive Transport of a FluidComponent.
3.1 Fick's Law.
3.2 Di_usion Without Advection in Steady State Conditions.
3.3 Double Scale Expansion Technique.
3.4 Training Set: Multilayer Porous Medium.
3.5 Concluding Remarks.
PART II: MICROPOROELASTICITY.
4. Drained Microelasticity.
4.1 1-D Thought Model: The Hollow Sphere.
4.2 Generalization.
4.3 Estimates of the Homogenized Elasticity Tensor.
4.4 Average and E_ective Strains in the Solid Phase.
4.5 Training Set: Molecular Di_usion in a Saturated PorousMedium.
5. Linear Microporoelasticity.
5.1 Loading Parameters.
5.2 1-D Thought Model: The Saturated Hollow Sphere Model.
5.3 Generalization.
5.4 Application: Estimates of the Poroelastic Constants andAverage Strain Level.
5.5 Levin's Theorem in Linear Microporoelasticity.
5.6 Training Set: The Two-Scale Double-Porosity Material.
6. Eshelby's Problem in Linear Diffusion andMicroporoelasticity.
6.1 Eshelby's Problem in Linear Diffusion.
6.2 Eshelby's Problem in Linear Microelasticity.
6.3 Implementation of Eshelby's Solution in LinearMicroporoelasticity.
6.4 Instructive exercise: Anisotropy of Poroelastic PropertiesInduced by Flat Pores.
6.5 Training Set : New estimates of the homogenized diffusiontensor.
6.6 Appendix: Cylindrical Inclusion in an Isotropic Matrix.
PART III: MICROPOROINELASTICITY.
7. Strength Homogenization.
7.1 1-D Thought Model: Strength Limits of the Saturated HollowSphere.
7.2 Macroscopic Strength of an Empty Porous Material.
7.3 Von Mises Behavior of the Solid Phase.
7.4 The Role of Pore Pressure on the Macroscopic StrengthCriterion.
7.5 Non Linear Microporoelasticity.
8. Non-Saturated Microporoomechanics.
8.1 The E_ect of Surface Tension at the Fluid-SolidInterface.
8.2 Microporoelasticity in Unsaturated Conditions.
8.3 Training Set: Drying Shrinkage in a Cylindrical PoreMaterial System.
8.4 Strength Domain of Non-Saturated Porous Media.
9. Microporoplasticity.
9.1 1-D Thought Model: The Saturated Hollow Sphere.
9.2 State Equations of Microporoplasticity.
9.3 Macroscopic Plasticity Criterion.
9.4 Dissipation Analysis.
10. Microporofracture and Damage Mechanics.
10.1 Elements of Linear Fracture Mechanics.
10.2 Dilute Estimates of Linear Poroelastic Properties ofCracked Media.
10.3 Mori-Tanaka Estimates of Linear Poroelastic Propertiesof
Cracked Media.
10.4 Micromechanics of Damage Propagation in SaturatedMedia.
10.5 Training Set: Damage Propagation in UndrainedConditions.
10.6 Appendix : Algebra for Transverse Isotropy andApplications.
References.
Index.