Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
E-Book, Englisch, 337 Seiten
Dmitrienko / Pulkstenis Clinical Trial Optimization Using R
1. Auflage 2017
ISBN: 978-1-4987-3508-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 337 Seiten
Reihe: Chapman & Hall/CRC Biostatistics Series
ISBN: 978-1-4987-3508-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The main goal of this book is to define a unified framework for clinical trial optimization based on a comprehensive quantitative evaluation of relevant clinical scenarios (using the clinical scenario evaluation approach) and introduce best practices for simulationbased optimization. The book will be aimed at a broad audience and will emphasize a hands-on approach with a detailed discussion of practical issues arising in clinical trial optimization and R software implementation (relevant statistical methodology will be moved to the appendix).
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Pharmakologie, Toxikologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
- Mathematik | Informatik Mathematik Stochastik
Weitere Infos & Material
Clinical Scenario Evaluation and Clinical Trial Optimization
Alex Dmitrienko and Gautier Paux
Introduction
Clinical scenario evaluation
Components of Clinical Scenario Evaluation
Software implementation
Case study 1.1: Clinical trial with a normally distributed endpoint
Case study 1.2: Clinical trial with two time-to-event endpoints
Clinical trial optimization
Optimization strategies
Optimization algorithm
Sensitivity assessments
Direct optimization
Case study 1.3: Clinical trial with two patient populations
Qualitative sensitivity assessment
Quantitative sensitivity assessment
Optimal selection of the target parameter
Tradeoff-based optimization
Case study 1.4: Clinical trial with an adaptive design
Optimal selection of the target parameter
Clinical Trials with Multiple Objectives
Alex Dmitrienko and Gautier Paux
Introduction
Clinical Scenario Evaluation framework
Case study 2.1: Optimal selection of a multiplicity adjustment
Qualitative sensitivity assessment
Quantitative sensitivity assessment
Software implementation
Conclusions and extensions
Case study 2.2: Direct selection of optimal procedure parameters
Case study 2.3: Tradeoff-based selection of optimal procedure parameters
Clinical trial
Subgroup Analysis in Clinical Trials
Alex Dmitrienko and Gautier Paux
Introduction
Clinical Scenario Evaluation in confirmatory subgroup analysis
Case study 3.1: Optimal selection of a multiplicity adjustment
Case study 3.2: Optimal selection of decision rules to support two potential claims
Case study 3.3: Optimal selection of decision rules to support three potential claims
Decision Making in Clinical Development
Kaushik Patra, Ming-Dauh Wang, Jianliang Zhang, Aaron Dane, Paul Metcalfe, Paul Frewer, and Erik Pulkstenis
Introduction
Clinical Scenario Evaluation in Go/No-Go decision making and determination of probability of success
Case study 4.1: Bayesian Go/No-Go decision criteria
Case study 4.2: Bayesian Go/No-Go evaluation using an alternative decision criterion
Case study 4.3: Bayesian Go/No-Go evaluation in a trial with an interim analysis
Case study 4.4: Decision criteria in Phase II trials based on Probability of Success
Case study 4.5: Updating POS using interim or external information
Bibliography