E-Book, Englisch, 337 Seiten
Dmitrienko / Pulkstenis Clinical Trial Optimization Using R
1. Auflage 2017
ISBN: 978-1-4987-3508-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 337 Seiten
Reihe: Chapman & Hall/CRC Biostatistics Series
            ISBN: 978-1-4987-3508-7 
            Verlag: CRC Press
            
 Format: PDF
    Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The main goal of this book is to define a unified framework for clinical trial optimization based on a comprehensive quantitative evaluation of relevant clinical scenarios (using the clinical scenario evaluation approach) and introduce best practices for simulationbased optimization. The book will be aimed at a broad audience and will emphasize a hands-on approach with a detailed discussion of practical issues arising in clinical trial optimization and R software implementation (relevant statistical methodology will be moved to the appendix).
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
- Mathematik | Informatik Mathematik Stochastik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Pharmakologie, Toxikologie
Weitere Infos & Material
Clinical Scenario Evaluation and Clinical Trial Optimization 
Alex Dmitrienko and Gautier Paux
Introduction 
Clinical scenario evaluation 
Components of Clinical Scenario Evaluation 
Software implementation 
Case study 1.1: Clinical trial with a normally distributed endpoint 
Case study 1.2: Clinical trial with two time-to-event endpoints 
Clinical trial optimization 
Optimization strategies 
Optimization algorithm 
Sensitivity assessments 
Direct optimization 
Case study 1.3: Clinical trial with two patient populations
Qualitative sensitivity assessment 
Quantitative sensitivity assessment 
Optimal selection of the target parameter 
Tradeoff-based optimization 
Case study 1.4: Clinical trial with an adaptive design 
Optimal selection of the target parameter 
Clinical Trials with Multiple Objectives 
Alex Dmitrienko and Gautier Paux
Introduction 
Clinical Scenario Evaluation framework
Case study 2.1: Optimal selection of a multiplicity adjustment
Qualitative sensitivity assessment
Quantitative sensitivity assessment  
Software implementation 
Conclusions and extensions 
Case study 2.2: Direct selection of optimal procedure parameters
Case study 2.3: Tradeoff-based selection of optimal procedure parameters 
Clinical trial 
Subgroup Analysis in Clinical Trials 
Alex Dmitrienko and Gautier Paux
Introduction 
Clinical Scenario Evaluation in confirmatory subgroup analysis 
Case study 3.1: Optimal selection of a multiplicity adjustment 
Case study 3.2: Optimal selection of decision rules to support two potential claims 
Case study 3.3: Optimal selection of decision rules to support three potential claims 
Decision Making in Clinical Development 
Kaushik Patra, Ming-Dauh Wang, Jianliang Zhang, Aaron Dane, Paul Metcalfe, Paul Frewer, and Erik Pulkstenis
Introduction 
Clinical Scenario Evaluation in Go/No-Go decision making and determination of probability of success 
Case study 4.1: Bayesian Go/No-Go decision criteria 
Case study 4.2: Bayesian Go/No-Go evaluation using an alternative decision criterion
Case study 4.3: Bayesian Go/No-Go evaluation in a trial with an interim analysis 
Case study 4.4: Decision criteria in Phase II trials based on Probability of Success 
Case study 4.5: Updating POS using interim or external information
Bibliography





