Dibenedetto / Aresta | Inorganic Micro- and Nanomaterials | E-Book | sack.de
E-Book

E-Book, Englisch, 229 Seiten

Dibenedetto / Aresta Inorganic Micro- and Nanomaterials

Synthesis and Characterization

E-Book, Englisch, 229 Seiten

ISBN: 978-3-11-030687-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The demand for new materials with novel properties on the micro- and nano-scale continues to grow. This book provides an overview of state-of-the-art techniques for the synthesis and characterization of inorganic nanomaterials including sonochemistry, microwave dielectric heating, sonoelectrochemistry and RAPET, high-throughput experimentation in heterogeneous catalyst research, photoluminescence, and methods for surface structuring. Imaging techniques include X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, single crystal and powder X-ray diffraction, X-ray microimaging (SAXS,WAXS & GISAXS), electron microscopy, and solid state NMR. The work is essential reading for all researchers in academia and industry working in the field of nanosciences.
Dibenedetto / Aresta Inorganic Micro- and Nanomaterials jetzt bestellen!

Zielgruppe


Researchers in inorganic chemistry and nanosciences

Weitere Infos & Material


1;Introduction: Nano- (and micro-)materials and human wellbeing;15
2;1 Coating antibacterial nanoparticles on textiles: Towards the future hospital in which all textiles will be antibacterial;17
2.1;1.1 Introduction: Application of nanotechnology for “smart” textiles;17
2.2;1.2 Sonochemical method for the synthesis of nanostructured materials and their adherence to solid substrates;20
2.3;1.3 Ultrasound assisted deposition of metal nano-oxides on textiles and their antibacterial properties;22
2.3.1;1.3.1 Synthesis and deposition of CuO nanoparticles;22
2.3.2;1.3.2 Finishing of textiles with crystalline TiO2 nanoparticles via a one-step process;24
2.3.3;1.3.3 Synthesis and deposition of ZnO;30
2.3.4;1.3.4 Enzymatic pretreatment as a means of enhancing antibacterial activity and stability of ZnO nanoparticles sonochemically coated on cotton fabrics;36
2.3.5;1.3.5 Size dependence of the antibacterial activity of ZnO NPs;42
2.4;1.4 Conclusion;42
2.4.1;Bibliography;43
3;2 Automated solutions for high-throughput experimentation in heterogeneous catalyst research;49
3.1;2.1 Introduction;49
3.2;2.2 The preparation of solid catalysts;51
3.3;2.3 Automation challenges examples;51
3.3.1;2.3.1 Integration of commercially available devices;52
3.4;2.4 A fully-automated solution;53
3.4.1;2.4.1 SOPHAS-CAT HT;53
3.4.2;2.4.2 The loading;53
3.4.3;2.4.3 The synthesizer;54
3.4.4;2.4.4 Extrudate preparation;55
3.4.5;2.4.5 Impregnation and drying;55
3.4.6;2.4.6 Calcination;56
3.4.7;2.4.7 Scraping and pelletizing;56
3.4.8;2.4.8 Grinding;57
3.4.9;2.4.9 Sieving;57
3.5;2.5 Conclusion;58
3.5.1;Bibliography;59
4;3 Insights from XPS on nanosized inorganic materials;61
4.1;3.1 Introduction;61
4.2;3.2 XPS in the nanodomain;61
4.3;3.3 Conclusions;67
4.3.1;Bibliography;69
5;4 Single crystal and powder XRD techniques: An overview;71
5.1;4.1 The single crystal XRD technique;71
5.1.1;4.1.1 Basics of the radiation-matter interaction;72
5.1.2;4.1.2 Basics of crystallography and X-ray diffraction by crystal;75
5.1.3;4.1.3 Solving the phase problem by direct methods;83
5.2;4.2 The powder XRD technique;88
5.2.1;4.2.1 Indexation;88
5.2.2;4.2.2 Space group determination;90
5.2.3;4.2.3 Profile decomposition and intensity extraction;91
5.2.4;4.2.4 Structure solution;93
5.2.5;4.2.5 Rietveld refinement;98
5.2.6;4.2.6 Examples;99
5.3;4.3 Conclusions;102
5.3.1;Bibliography;103
6;5 Structural and electronic characterization of nanosized inorganic materials by X-ray absorption spectroscopies;107
6.1;5.1 Introduction;107
6.2;5.2 XAS spectroscopy: Basic background;107
6.2.1;5.2.1 Theoretical background of XAS spectroscopy;108
6.2.2;5.2.2 The XANES region;110
6.2.3;5.2.3 The EXAFS region;110
6.2.4;5.2.4 Advantages and drawbacks of the technique;113
6.3;5.3 CuCl2/Al2O3-based catalysts for ethylene oxychlorination;114
6.3.1;5.3.1 Industrial relevance of the CuCl2/Al2O3 system;114
6.3.2;5.3.2 Preliminary in situ XAFS experiments;115
6.3.2.1;5.3.2.1 The determination of the Cu-aluminate phase: How to avoid possible pitfalls in the EXAFS data analysis;115
6.3.2.2;5.3.2.2 Catalyst reactivity with the separate reactants: In situ XAFS experiments;117
6.3.3;5.3.3 Operando experiments and criteria used to face the presence of more than one phase in the sample;119
6.4;5.4 Structural and electronic configuration of Cp2Cr molecules encapsulated in PS and Na-Y zeolite and their reactivity towards CO;123
6.4.1;5.4.1 Structure of Cp2Cr encapsulated in PS and Na-Y zeolite matrices;123
6.4.2;5.4.2 Determination of the electronic structure of Cp2Cr by combined UV-Vis and XANES spectroscopies;125
6.4.3;5.4.3 Reactivity of Cp2Cr hosted in PS and in Na-Y zeolite towards CO: IR and XAFS results;128
6.5;5.5 Transition metal complexes in solution: The [cis-Ru(bpy)2(py)2]2+ case study;131
6.5.1;5.5.1 Structure refinement of cis-[Ru(bpy)2(py)2]2+ in aqueous solution by EXAFS spectroscopy;132
6.5.2;5.5.2 Advanced details of the EXAFS structure refinement of cis-[Ru(bpy)2(py)2]2+ complex;134
6.6;5.6 EXAFS study on MOFs of the UiO-66/UiO-67 family: comparison with XRPD and ab initio investigations;136
6.7;5.7 Applications of X-ray micro beams: Electroabsorption modulated laser for optoelectronic devices;141
6.7.1;Bibliography;143
7;6 Lens-less scanning X-ray microscopy with SAXS and WAXS contrast;151
7.1;6.1 Introduction;151
7.2;6.2 X-ray microscopes;152
7.3;6.3 Small-angle and wide-angle scattering contrast (SAXS and WAXS);157
7.4;6.4 Applications;163
7.4.1;Bibliography;168
8;7 Characterization of inorganic nanostructured materials by electron microscopy;171
8.1;7.1 Introduction;171
8.2;7.2 Electron microscopy;172
8.2.1;7.2.1 Working principles;173
8.3;7.3 Scanning electron microscopy;175
8.3.1;7.3.1 Magnification and resolution of SEM;177
8.3.2;7.3.2 Interaction of the electron beam with the sample: elastic and inelastic scattering;177
8.3.2.1;7.3.2.1 Secondary electrons and their detection;178
8.3.2.2;7.3.2.2 Backscattered electrons and their detection;180
8.3.2.3;7.3.2.3 Energy loss;181
8.4;7.4 Transmission electron microscopy;181
8.4.1;7.4.1 The instrument;182
8.4.2;7.4.2 Image formation process;183
8.5;7.5 Sample preparation for electron microscopy;188
8.5.1;7.5.1 SEM sample preparation;188
8.5.1.1;7.5.1.1 Casting;188
8.5.1.2;7.5.1.2 Ion sputtering;189
8.5.2;7.5.2 Sample preparation for TEM;189
8.6;7.6 Inorganic nanocrystal investigation by SEM;191
8.7;7.7 Inorganic nanocrystal investigation by TEM;200
8.7.1;7.7.1 Bright field mode;200
8.7.2;7.7.2 Dark field contrast mode;203
8.7.3;7.7.3 Diffraction mode – electron diffraction;204
8.7.3.1;7.7.3.1 Selected area diffraction;205
8.7.3.2;7.7.3.2 Convergent beam electron diffraction;205
8.7.3.3;7.7.3.3 Investigating crystalline structure: High-resolution TEM;206
8.8;7.8 Chemical analysis by electron microscopy;207
8.8.1;7.8.1 Energy dispersion spectroscopy (EDS);207
8.8.2;7.8.2 Electron energy loss spectroscopy (EELS);208
8.8.3;7.8.3 Energy-filtered transmission electron microscopy (EFTEM);209
8.8.4;7.8.4 Some examples of chemical analysis in electron microscopy;209
8.9;7.9 Conclusions;211
8.9.1;Bibliography;211
9;8 Nanosized particles: questioned for their potential toxicity, but some are applied in biomedicine;213
9.1;8.1 Introduction;213
9.2;8.2 Nanoparticles classification;213
9.3;8.3 Nanoparticles and biosystems;215
9.4;8.4 Stability and toxicity;216
9.5;8.5 Fields of application of engineered nanoparticles;217
9.6;8.6 Access to bio-organisms and toxicity to organisms;218
9.7;8.7 Applications of nanoparticles in biomedicine;219
9.8;8.8 Measurement of the concentration;220
9.9;8.9 Conclusions;220
9.9.1;Bibliography;221
10;Index;225


Michele Aresta, University of Bari, Italy; Angela Dibenedetto, University of Bari, Italy.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.