Devanathan | Intelligent Tuning and Adaptive Control | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 7, 436 Seiten, Web PDF

Reihe: IFAC Symposia Series

Devanathan Intelligent Tuning and Adaptive Control

Selected Papers from the IFAC Symposium, Singapore, 15-17 January 1991
1. Auflage 2014
ISBN: 978-1-4832-9895-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Papers from the IFAC Symposium, Singapore, 15-17 January 1991

E-Book, Englisch, Band Volume 7, 436 Seiten, Web PDF

Reihe: IFAC Symposia Series

ISBN: 978-1-4832-9895-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume contains 67 papers reporting on the state-of-the-art research in the fields of adaptive control and intelligent tuning. Papers include applications in robotics, the processing industries and machine control.

Devanathan Intelligent Tuning and Adaptive Control jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Intelligent Tuning and Adaptive Control;4
3;Copyright Page;5
4;Table of Contents;8
5;PART 1: PLENARY SESSION;14
5.1;CHAPTER 1. DIRECTIONS IN INTELLIGENT CONTROL;14
5.1.1;1. Introduction;14
5.1.2;2 . Methodologies;15
5.1.3;3· Control System Design;17
5.1.4;4. On-Line Systems;18
5.1.5;5. Autonomous Controllers;19
5.1.6;6. Conclusions;20
5.1.7;7. References;20
6;PART 2: INTELLIGENT TUNING/CONTROL;24
6.1;CHAPTER 2. INTELLIGENT SELF-TUNING PID CONTROLLER;24
6.1.1;INTRODUCTION;24
6.1.2;BASIC PRINCIPLES;24
6.1.3;LOOP SUPERVISOR;26
6.1.4;SPECIFICATIONS;26
6.1.5;IMPLEMENTATION;27
6.1.6;SIMULATIONS;27
6.1.7;FIELD TESTS;27
6.1.8;CONCLUSIONS;28
6.1.9;REFERENCES;28
6.2;CHAPTER 3. AN ELEMENTARY PATTERN RECOGNITION SELF-TUNING PI-CONTROLLER;30
6.2.1;INRODUCTION;30
6.2.2;ADAPTATION STRATEGY AND INFORMATIONAL MODELLING;30
6.2.3;PATTERN RECOGNITION CONTROL;31
6.2.4;PERFORMANCE RESULTS;32
6.2.5;CONCLUSIONS;33
6.2.6;REFERENCES;33
7;PART 3: ADAPTIVE CONTROL;36
7.1;CHAPTER 4. A DESIGN OF HYBRID ADAPTIVE CONTROL HAVING COMPUTATIONAL DELAYS;36
7.1.1;INTRODUCTION;36
7.1.2;SYSTEM DESCRIPTION;36
7.1.3;ADAPTIVE CONTROL;37
7.1.4;ANALYSIS;38
7.1.5;SIMULATION;39
7.1.6;CONCLUSION;40
7.1.7;REFERENCES;40
7.2;CHAPTER 5. ROBUSTNESS OF THE COMBINED MRAC USING KNOWLEDGE OF A BOUND ON;42
7.2.1;INTRODUCATION;42
7.2.2;SIMULATION RESULTS;43
7.2.3;CONCLUSIONS;45
7.2.4;ACKNOWLEDGENTS;46
7.2.5;REFERENCES;46
7.3;CHAPTER 6. A NEW SOLUTION TO ADAPTIVE INVERSE CONTROL;48
7.3.1;INTRODUCTION;48
7.3.2;NEW SCHEME;48
7.3.3;POLYNOMIAL INVERSION;49
7.3.4;STABILITY;50
7.3.5;COMPUTER RESULTS;51
7.3.6;CONCLUSIONS;53
7.3.7;ACKNOWLEDGMENT;53
7.3.8;REFERENCES;53
7.4;CHAPTER 7. CONTINUOUS-TIME GENERALIZED PREDICTIVE ADAPTIVE CONTROL;54
7.4.1;INTRODUCTION;54
7.4.2;DISCRETE TIME GENERALIZED PREDICTIVE CONTROL;55
7.4.3;THE STANDARD APPROACH TO OPTIMAL CONTROL;55
7.4.4;AN ALTERNATIVE APPROACH;56
7.4.5;CONCLUSION;59
7.4.6;REFERENCES;59
8;PART 4: PROCESS CONTROL;60
8.1;CHAPTER 8. ADAPTIVE SYSTEMS IN PROCESS ENGINEERING;60
8.1.1;INTRODUCTION;60
8.1.2;ADAPTIVE CONTROL;60
8.1.3;ADAPTIVE OPTIMISATION;61
8.1.4;ADAPTIVE INFERENTIAL MEASUREMENT AND CONTROL;62
8.1.5;IMPLEMENTATION ASPECTS;63
8.1.6;CONCLUDING REMARKS;64
8.1.7;ACKNOWLEDGEMENTS;64
8.1.8;REFERENCES;64
8.2;CHAPTER 9. PROCESS CONTROL UNDER VARIABLE FLOW AND VOLUME;68
8.2.1;1 INTRODUCTION;68
8.2.2;2 CONTROL OF CONSTANT PARAMETER VESSEL;68
8.2.3;3 PROCESS WITH VARIABLE FLOW AND CONSTANT VOLUME;69
8.2.4;4. PROCESSES WITH VARIABLE VOLUME AND FLOW;70
8.2.5;5. FEEDFORWARD CONTROL UNDER VARIABLE VOLUME;72
8.2.6;6. FEEDBACK CONTROL UNDER VARIABLE VOLUME;72
8.2.7;7. DISCUSSION AND CONCLUSIONS;73
8.2.8;REFERENCES;73
8.3;CHAPTER 10. TURBINE GENERATOR EXCITATION CONTROL USING ADVANCED DIGITAL TECHNIQUES;76
8.3.1;INTRODUCTION;76
8.3.2;THEORY;76
8.3.3;IMPLEMENTATION OF THE SELF-TUNING AVR;77
8.3.4;EVALUATION OF THE CONTROLLER;78
8.3.5;MICRO-ALTERNATOR AND SIMULATION RESULTS;78
8.3.6;CONCLUSION;79
8.3.7;ACKNOWLEDGEMENT;79
8.3.8;REFERENCES;79
8.4;CHAPTER 11. NON-LINEAR PREDICTIVE CONTROL;82
8.4.1;INTRODUCTION;82
8.4.2;AN APPROACH TO NONLINEAR PREDICTIVE CONTROL;82
8.4.3;ILLUSTRATIVE EXAMPLES;84
8.4.4;CONCLUDING REMARKS;85
8.4.5;ACKNOWLEDGEMENTS;85
8.4.6;REFERENCES;85
8.5;CHAPTER 12. TUNING OF PID CONROLLERS: SURVEY OF SISO AND MIMO TECHNIQUES;88
8.5.1;INTRODUCTION;88
8.5.2;MULTIVARIABLE PID CONTROLLER;89
8.5.3;EXPERIMENTAL DETERMINATION OF THE GAIN MATRICES;90
8.5.4;EXTENSIONS TO OTHER PLANTS;90
8.5.5;DECENTRALIZED AND EXPERT TUNING;91
8.5.6;CONCLUSIONS;91
8.5.7;REFERENCES;91
9;PART 5: NEURAL NETWORK/SELF-TUNING APPLICATIONS;94
9.1;CHAPTER 13. PARAMETER ESTIMATION USING ARTIFICIAL NEURAL NETS;94
9.1.1;INTRODUCTION;94
9.1.2;THE ESTIMATOR;95
9.1.3;SIMULATION RESULTS;95
9.1.4;DISCUSSION;96
9.1.5;CONCLUSION;96
9.1.6;REFERENCES;96
9.2;CHAPTER 14. INFERENTIAL MEASUREMENT VIA ARTIFICIAL NEURAL NETWORKS;98
9.2.1;INTRODUCTION;98
9.2.2;PROCESS MODELLING VIA ARTIFICIAL NEURAL NETWORKS.;98
9.2.3;INFERENTIAL MEASUREMENT;100
9.2.4;INFERENTIAL CONTROL VIA ANNs.;100
9.2.5;CONCLUDING REMARKS;101
9.2.6;ACKNOWLEDGEMENTS;101
9.2.7;REFERENCES;101
9.3;CHAPTER 15. ROBOT MOTION PLANNING AND CONTROL USING NEURAL NETWORKS;104
9.3.1;NEURAL NETWORKS IN ROBOTICS;104
9.3.2;NEURAL NETWORK CONTROLLER;105
9.3.3;NEURAL NETWORK NONLINEAR CONTROLLERS;106
9.3.4;CONCLUSIONS;108
9.3.5;REFERENCES;109
9.4;CHAPTER 16. ADAPTIVE NONLINEAR CONTROL OF A LABORATORY WATER-GAS SHIFT REACTOR;110
9.4.1;INTRODUCTION;110
9.4.2;THE CONTROLLER;110
9.4.3;THE ESTIMATOR;111
9.4.4;THE FIXED-BED WATER-GAS SHIFT REACTOR;112
9.4.5;RESULTS AND DISCUSSION;112
9.4.6;CONCLUSIONS;113
9.4.7;REFERENCES;114
9.5;CHAPTER 17. A CO-ORDINATED SELF-TUNING EXCITATION AND GOVERNOR CONTROL SCHEME FOR POWER SYSTEMS;116
9.5.1;INTRODUCTION;116
9.5.2;POWER SYSTEM UNDER STUDY;116
9.5.3;PROPOSED SELF-TUNING CONTROL SCHEME;117
9.5.4;OVERALL SYSTEM DATA;118
9.5.5;NUMERICAL RESULTS;119
9.5.6;CONCLUSION;119
9.5.7;REFERENCES;119
10;PART 6: IMPLEMENTATION ISSUES;122
10.1;CHAPTER 18. IMPLEMENTATION OF ADAPTIVE CONTROLLERS USING DIGITAL SIGNAL PROCESSOR CHIPS;122
10.1.1;INTRODUCTION;122
10.1.2;ADAPTIVE POSITION CONTROL OF A DC MOTOR;122
10.1.3;IMPLEMENTATION OF ADAPTIVE CONTROLLERS FOR A DC MOTOR USING DSP CHIPS;123
10.1.4;ON-LINE TESTING RESULTS AND DISCUSSIONS;124
10.1.5;CONCLUSIONS;124
10.1.6;ACKNOWLEDGEMENTS;125
10.1.7;REFERENCES;125
10.2;CHAPTER 19. AUTO-TUNING OF MULTIVARIABLE DECOUPLING CONTROLLERS;128
10.2.1;1. INTRODUCTION;128
10.2.2;2. STRUCTURE OF AUTO-TUNING MULTIVARIABLE DECOUPLING CONTROLLER;128
10.2.3;3. ISSUES IN IMPLEMENTATION;131
10.2.4;4. CONCLUSION;132
10.2.5;References;133
10.3;CHAPTER 20. ISSUES IN THE DESIGN OF AN ADAPTIVE GPC FOR SYSTEMS REQUIRING FAST SAMPLING;134
10.3.1;1 Introduction;134
10.3.2;2 The GPC — conventional shift operator design;134
10.3.3;3 Delta operator re-design of the adaptive GPC;135
10.3.4;4 Conclusion;136
10.3.5;References;136
10.4;CHAPTER 21. ADAPTIVE POLE PLACEMENT CONTROL LAW USING THE DELTA OPERATOR;140
10.4.1;I. Introduction;140
10.4.2;II. Identification;140
10.4.3;Ill. Pole-placement control law;141
10.4.4;IV. Physical experiments;142
10.4.5;V. Conclusion;142
10.4.6;References;143
11;PART 7: ADAPTIVE CONTROL;146
11.1;CHAPTER 22. A NON MINIMAL MODEL FOR SELF TUNING CONTROL;146
11.1.1;INTRODUCTION;146
11.1.2;THE ALGORITHM;146
11.1.3;MODEL CONVERSION;147
11.1.4;DEVELOPMENT OF NON ADAPTIVE MULTI-RATE CONTROLLER;147
11.1.5;SIMULATION RESULTS;148
11.1.6;CONCLUSIONS;149
11.1.7;REFERENCES;149
11.2;CHAPTER 23. A LEARNING MODIFIED GENERALIZED PREDICTIVE CONTROLLER;152
11.2.1;INTRODUCTION;152
11.2.2;OVERALL STRUCTURE AND OPERATION PRINCIPLE OF LMGPC;153
11.2.3;LEARNING PROCESS OF ON-LINE OPTIMIZATION OF THE OMA FILTER PARAMETER;154
11.2.4;LEARNING PROCESS FOR ON-LINE OPTIMIZATION OF THE MGPC PARAMETER N, M & .;155
11.2.5;NUMERICAL SIMULATIONS AND EXPERIMENTAL TESTS;156
11.2.6;REFERENCES;157
11.3;CHAPTER 24. INTELLIGENT ADAPTIVE CONTROL OF MODE-SWITCH PROCESSES;158
11.3.1;1 Introduction;158
11.3.2;2 Modeling of mode-switch processes;158
11.3.3;3 Supervisor;159
11.3.4;4 Retrieval;160
11.3.5;5 Application (Robot control);160
11.3.6;6 Conclusions;163
11.3.7;Appendix Robot model;163
11.3.8;Literature;163
11.4;CHAPTER 25. MODEL REFERENCE ADAPTIVE CONTROL OF A CLASS OF NONLINEAR SYSTEMS;164
11.4.1;INTRODUCTION;164
11.4.2;STATEMENT OF THE PROBLEM;164
11.4.3;ADAPTIVE CONTROL UNDER THE PRESENCE OF INPUT SATURATION;165
11.4.4;ADAPTIVE CONTROL UNDER THE PRESENCE OF DEADZONE;166
11.4.5;DIGITAL SIMULATION;166
11.4.6;CONCLUSION;167
11.4.7;REFERENCES;167
11.5;CHAPTER 26. ADAPTIVE FREQUENCY RESPONSE COMPENSATION: EXPERIMENTS ON A HEAT EXCHANGER;170
11.5.1;I. INTRODUCTION;170
11.5.2;II. DESIGN PROCEDURE;170
11.5.3;III. EXPERIMENTAL RESULTS;172
11.5.4;V. CONCLUDING REMARKS;173
11.5.5;REFERENCES;173
11.6;CHAPTER 27. THE APPLICATION OF MULTIVARIABLE ADAPTIVE CONTROL TO AN INDUSTRIAL RUN-OF-MINE MILLING PROCESS;176
11.6.1;INTRODUCTION;176
11.6.2;THE RUN-OF-MINE MILLING PROCESS;176
11.6.3;THE ALGORITHM;177
11.6.4;RESULTS OF THE SIMULATION;179
11.6.5;CONCLUSION;180
11.6.6;ACKNOWLEDGEMENT;180
11.6.7;REFERENCES;180
12;PART 8: PLENARY SESSION;184
12.1;CHAPTER 28. INDUSTRIAL DEVELOPMENTS IN INTELLIGENT AND ADAPTIVE CONTROL;184
12.1.1;1. Introduction;184
12.1.2;2. PID-type Self-tuning Control;184
12.1.3;3. Open-loop Adaptive Control;187
12.1.4;4. Fuzzy Control;187
12.1.5;5. Conclusion;191
12.1.6;6. Reference;191
13;PART 9: ROBOTIC CONTROL;192
13.1;CHAPTER 29. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE CONTROLLER FOR A HYDRAULIC TEST ROBOT;192
13.1.1;INTRODUCTION;192
13.1.2;THE DESIGNED FAST HYDRAULIC TEST ROBOT MANIPULATOR;192
13.1.3;DESIGN AND IMPLEMENTATION OF THE CONTROL SYSTEM;194
13.1.4;CONCLUSIONS;197
13.1.5;REFERENCES.;198
13.2;CHAPTER 30. IMPLEMENTATION OF IMPEDANCE CONTROL USING SLIDING MODE THEORY;200
13.2.1;INTRODUCTION;200
13.2.2;DESIGN OF CONTROLLER;201
13.2.3;DESCRIPTION OF EXPERIMENT;203
13.2.4;EXPERIMENTAL RESULTS;204
13.2.5;CONCLUSION;205
13.2.6;ACKNOWLEDGMENT;205
13.2.7;REFERENCES;205
13.3;CHAPTER 31. ORTHONORMAL FUNCTIONS IN IDENTIFICATION AND ADAPTIVE CONTROL;206
13.3.1;INTRODUCTION;206
13.3.2;LAGUERRE FUNCTIONS;206
13.3.3;IDENTIFICATION;207
13.3.4;CONTROL;209
13.3.5;CONCLUSIONS;210
13.3.6;ACKNOWLEDGMENTS;210
13.3.7;LITERATURE CITED;211
13.4;CHAPTER 32. ADAPTIVE CONTROL FOR A ROBOT ARM AND A ROBOT DRIVE SYSTEM WITH ELASTICITY;212
13.4.1;INTRODUCTION;212
13.4.2;POSITION CONTROL OF A FLEXIBLE ARM;212
13.4.3;FORCE FEEDBACK CONTROL OF FLEXIBLE ARM;213
13.4.4;DD SERVO SYSTEM;215
13.4.5;REFERENCES;215
14;PART 10: KNOWLEDGE BASED CONTROL;218
14.1;CHAPTER 33. SELF-TUNING CONTROL WITH FUZZY RULE-BASED SUPERVISION FOR HVAC APPLICATIONS;218
14.1.1;INTRODUCTION;218
14.1.2;FUZZY RULE-BASED GAIN SCHEDULING;218
14.1.3;TEST RESULTS;220
14.1.4;CONCLUSIONS;221
14.1.5;References;221
14.2;CHAPTER 34. AN EXPERT SYSTEM FOR THE MULTIVARIABLE CONTROLLER DESIGN;224
14.2.1;INTRODUCTION;224
14.2.2;CONTROLLER DESIGN;224
14.2.3;INTERACTION MATRICES;225
14.2.4;INTERACTION MEASURES;226
14.2.5;CONTROLLER TUNING;227
14.2.6;CONTROLLER ANALYSIS;228
14.2.7;EXPERT SYSTEM;228
14.2.8;CONCLUSIONS;229
14.2.9;REFERENCES;229
14.3;CHAPTER 35. EXPERT SELF-TUNING PI(D) CONTROLLER;230
14.3.1;INTRODUCTION;230
14.3.2;PRELIMINARIES;230
14.3.3;MINIMUM IE CRITERION;231
14.3.4;OPTIMUM CHARACTERISTICS;231
14.3.5;PROCESS IDENTIFICATION;232
14.3.6;EXPERIMENTAL RESULTS;234
14.3.7;CONCLUSIONS;235
14.3.8;ACKNOWLEDGEMENT;235
14.3.9;REFERENCES;235
14.4;CHAPTER 36. INVESTIGATIVE STUDIES FOR A KNOWLEDGE-BASED INTELLIGENT ADAPTIVE GENERALISED PREDICTIVE CONTROLLER;236
14.4.1;1. Introduction;236
14.4.2;2. Overview of the GPC algorithm;236
14.4.3;3.Closed-loop investigation of the GPC with first order plant;237
14.4.4;4.Tuning Rules;239
14.4.5;5. Conclusions;239
14.4.6;References;240
14.5;CHAPTER 37. BOUND-BASED WORST-CASE PREDICTIVE CONTROLLER;242
14.5.1;INTRODUCTION;242
14.5.2;MOTIVATION OF PARAMETER-BOUNDING;242
14.5.3;WORST CASE CONTROL BY PARAMETER BOUNDING;244
14.5.4;BOUNDING PREDICTIVE CONTROLLER;245
14.5.5;SIMULATIONS;246
14.5.6;CONCLUSION;247
14.5.7;References;247
14.6;CHAPTER 38. AN EXPERT-ADAPTIVE CONTROLLER;248
14.6.1;INTRODUCTION;248
14.6.2;SELF-TUNING STRATEGIES BASED ON KNOWLEDGE-BASE;248
14.6.3;A NEW METHOD OF PROCESS PARAMETERS ESTIMATION FOR PRE-TUING;249
14.6.4;SIMULATION STUDIES;250
14.6.5;CONCLUSION;250
14.6.6;ACKNOWLEDGEMENT;250
14.6.7;REFERENCE;250
15;PART 11: INTELLIGENT TUNING/CONTROL;252
15.1;CHAPTER 39. AN EXTENDED HORIZON SELF TUNING LOAD FREQUENCY CONTROLLER;252
15.1.1;INTRODUCTION;252
15.1.2;CONTROL DESIGN;253
15.1.3;APPLICATION TO LFC;254
15.1.4;CONCLUSIONS;255
15.1.5;REFERENCES;255
15.2;CHAPTER 40. DESIGN AND IMPLEMENTATION OF A PARALLEL MULTIVARIABLE ADAPTIVE CONTROLLER FOR A FREE GYRO STABILISED MIRROR;258
15.2.1;1. Introduction;258
15.2.2;2. Theory;258
15.2.3;3. Parallel Design;259
15.2.4;4. Implementation Issues;260
15.2.5;5. Performance;261
15.2.6;6. Conclusion;262
15.2.7;References;263
15.3;CHAPTER 41. EXPLICIT PID SELF TUNING CONTROL FOR SYSTEMS WITH UNKNOWN TIME DELAY;264
15.3.1;ABSTRACT;264
15.3.2;1. Introduction;264
15.3.3;2. State of Art;264
15.3.4;3. Explicit PID self tuins control;266
15.3.5;4. Simulations;268
15.3.6;5. Conclusions;270
15.3.7;List of References;270
15.4;CHAPTER 42. LQG ADAPTIVE CONTROL OF PROLONGED NOISE EFFECTS;272
15.4.1;Introduction;272
15.4.2;The Adaptive Controller;272
15.4.3;Results;274
15.4.4;Conclusions;275
15.4.5;Acknowledgements;275
15.4.6;References;275
15.5;CHAPTER 43. AN EXPERIMENTAL STUDY OF A DUAL-RATE AUTOTUNED POLE-PLACEMENT CONTROLLER;278
15.5.1;1. Introduction;278
15.5.2;2. Dual-rate autotuned pole-placement controller;278
15.5.3;3. Microcontroller Implementation;280
15.5.4;4. Experimental Results;280
15.5.5;5. Conclusion;281
15.5.6;REFERENCES;281
15.6;CHAPTER 44. INTELLIGENT MULTIOBJECTIVE OPTIMAL CONTROL;284
15.6.1;INTRODUCTION;284
15.6.2;PROCESS PARTITION;285
15.6.3;INTELLIGENT MULTIOBJECTIVE OPTIMAL CONTROLLER;286
15.6.4;THE APPLICATION OF IMOC IN TRAIN-TRAVELLING CONTROL;288
15.6.5;CONCLUSIONS;289
15.6.6;REFERENCES;289
16;PART 12: PLENARY SESSION;290
16.1;CHAPTER 45. MODEL ACCURACY IN SYSTEM IDENTIFICATION;290
16.1.1;1 Introduction;290
16.1.2;2 The System Identification Machinery;290
16.1.3;3 Contributions to the Model Error;291
16.1.4;4 The Random Error;292
16.1.5;5 The Bias Error;292
16.1.6;6 Conclusions;293
16.1.7;References;293
17;PART 13: CONTROL OF DRIVES/SERVOS/APPLICATIONS;296
17.1;CHAPTER 46. A MICROCONTROLLER-BASED ADAPTIVE POSITION CONTROLLER FOR A D.C. MOTOR;296
17.1.1;1. INTRODUCTION;296
17.1.2;2. Adaptive Controller for a D.C. Motor using the Partially Known System Approach;296
17.1.3;3. Design Guidelines for Digital Implementation;298
17.1.4;4. MICROCONTROLLER-BASED ADAPTIVE CONTROLLER;299
17.1.5;5. CONCLUSION;301
17.1.6;6. REFERENCES;301
17.2;CHAPTER 47. ADAPTIVE TEMPERATURE CONTROL OF INDUSTRIAL DIFFUSION/LPCVD REACTORS1;302
17.2.1;INTRODUCTION;302
17.2.2;THE OPTIMAL FIXED-ORDER DYNAMIC COMPENSATION PROBLEM;303
17.2.3;CONTINUATION METHODS AND A HOMOTOPY ALGORITHM;304
17.2.4;CONTROLLER DESIGN FOR DIFFUSION /LPCVD REACTORS;305
17.2.5;CONCLUSION;306
17.2.6;ACKNOWLEDGMENT;306
17.2.7;REFERENCES;306
17.3;CHAPTER 48. DESIGN AND IMPLEMENTATION OF THE ADAPTIVE SYNCHRONIZING FEEDFORWARD CONTROLLER FOR TWO AXES MOTION CONTROL SYSTEMS;308
17.3.1;INTRODUCTION;308
17.3.2;INDEPENDENT ADAPTIVE FEEDFORWARD CONTROL;308
17.3.3;ADAPTIVE SYNCHRONIZING FEEDFORWARD CONTROL;311
17.3.4;CONCLUSION;313
17.3.5;REFERENCES;313
17.4;CHAPTER 49. INTELLIGENT TUNING AND ADAPTIVE CONTROL FOR CEMENT RAW MEAL BLENDING PROCESS;314
17.4.1;1 - INTRODUCTION;314
17.4.2;2 - RAW MEAL BLENDING CONTROL PROBLEM;314
17.4.3;3 - CONTROL POLICY;315
17.4.4;4 - HEURISTIC SUPERVISION;317
17.4.5;5 - SIMULATION RESULTS;318
17.4.6;6 - EXPERIMENTS IN CEMENT PLANTS;318
17.4.7;CONCLUSION;318
17.4.8;REFERENCES;319
17.5;CHAPTER 50. DYNAMIC POSITIONING SYSTEM USING SELF-TUNING CONTROL;320
17.5.1;INTRODUCTION;320
17.5.2;SELF-TUNING CONTROLLER;321
17.5.3;MODEL OF SEMI-SUBMERSIBLE RIG;321
17.5.4;DPS DESIGN;323
17.5.5;CONCLUSION;324
17.5.6;REFERENCES;325
17.6;CHAPTER 51. PRACTICAL ADAPTIVE LEVEL CONTROL OF A THERMAL HYDRAULIC PROCESS;326
17.6.1;INTRODUCTION;326
17.6.2;PROCESS DESCRIPTION;326
17.6.3;PSTC DESIGN;327
17.6.4;MPI CONTROL;330
17.6.5;EXPERIMENTAL RESULTS;330
17.6.6;CONCLUSIONS;331
17.6.7;ACKNOWLEDGEMENTS;331
17.6.8;REFERENCES;331
18;PART 14: KNOWLEDGE BASED CONTROL/ADAPTIVE CONTROL;332
18.1;CHAPTER 52. A PROTOTYPE EXPERT SYSTEM BASED ON LAGUERRE ADAPTIVE CONTROL;332
18.1.1;INTRODUCTION;332
18.1.2;STRUCTURE OF EXPERT CONTROL;333
18.1.3;SYSTEM STRUCTURE;333
18.1.4;LAGUERRE ADAPTIVE CONTROLLER;334
18.1.5;IMPLEMENTATION;334
18.1.6;SIMULATION;335
18.1.7;CONCLUSIONS;336
18.1.8;ACKNOWLEDGEMENTS;336
18.1.9;REFERENCES;337
18.2;CHAPTER 53. REALIZATION OF AN EXPERT SYSTEM BASED PID CONTROLLER USING INDUSTRY STANDARD SOFTWARE AND HARDWARE ENVIRONMENTS;340
18.2.1;INTRODUCTION;340
18.2.2;OVERVIEW OF KNOWLEDGE-BASED INTELLIGENT PID CONTROLLER;340
18.2.3;HARDWARE REQUIREMENTS OF DISTRIBUTED KNOWLEDGE-BASED CONTROL SYSTEM;341
18.2.4;SOFTWARE REQUIREMENTS FOR KNOWLEDGE-BASED CONTROL;342
18.2.5;CONCLUSIONS;344
18.2.6;REFERENCES;344
18.3;CHAPTER 54. ROBUST ADAPTIVE CONTROL SYSTEM BASED ON EXTENDED LEAKY INTEGRATION METHOD;348
18.3.1;INTRODUCTION;348
18.3.2;SYSTEM DESCRIPTION AND PROBLEM STATEMENT;349
18.3.3;CONTROLLERS STRUCTURE;350
18.3.4;EXTENDED LEAKY INTEGRATION METHOD;350
18.3.5;CONCLUSIONS;353
18.3.6;REFERENCES;353
18.4;CHAPTER 55. AN INTELLIGENT NONLINEAR ADAPTIVE MINIMUM-VARIANCE CONTROLLER;354
18.4.1;Summary;354
18.4.2;1. Problem formulation;354
18.4.3;2. Pre-identification and structure determination;354
18.4.4;3. Control law;355
18.4.5;4. Parameter estimation and switching conditions;355
18.4.6;Conclusions;356
18.4.7;References;356
18.5;CHAPTER 56. SELF-TUNING ADAPTIVE CONTROL BASED ON A NEW PARAMETER ESTIMATION METHOD;358
18.5.1;INTRODUCTION;358
18.5.2;VARIATIONAL METHOD;358
18.5.3;PARAMETER ESTIMATION;359
18.5.4;ADAPTIVE REGULATOR;361
18.5.5;SIMULATION;362
18.5.6;CONCLUSION;362
18.5.7;REFERENCES;363
19;PART 15: PREDICTIVE AND ROBUST CONTROL;364
19.1;CHAPTER 57. ON THE DESIGN OF THE UNIFIED PREDICTIVE CONTROLLER;364
19.1.1;Abstract;364
19.1.2;Introduction;364
19.1.3;Unified Predictive Control;364
19.1.4;Tuning of the UPC Design Parameters;365
19.1.5;Rule of Thumb methods;368
19.1.6;Conclusions;369
19.1.7;References;369
19.2;CHAPTER 58. A COMPARATIVE STUDY OF SOME MULTIVARIABLE PI CONTROLLER TUNING METHODS;370
19.2.1;INTRODUCTION;370
19.2.2;1. THE COMPARED TUNING METHODS;370
19.2.3;2. FREQUENCY DOMAIN COMPARISON CRITERIA;371
19.2.4;3. THE SIMULATION EXAMPLE;372
19.2.5;4. FREQUENCY DOMAIN COMPARISONS;372
19.2.6;5. TIME DOMAIN COMPARISONS;374
19.2.7;7. REFERENCES;375
19.3;CHAPTER 59. PREDICTIVE CONTROL OF NONLINEAR PROCESSES;376
19.3.1;Abstract;376
19.3.2;Introduction;376
19.3.3;Predictive Control;376
19.3.4;Minimization of the Criterion Function;378
19.3.5;Description of the pH Process;378
19.3.6;Alternative approach to controlling pH processes;379
19.3.7;Simulated and Experimental Results;380
19.3.8;Conclusions;381
19.3.9;References;381
19.4;CHAPTER 60. ENHANCED ROBUSTNESS FOR PITCH POINTING FLIGHT USING SLIDING MODE CONTROL;382
19.4.1;1 INTRODUCTION;382
19.4.2;2 PITCH POINTING FLIGHT CONTROL SYSTEM;382
19.4.3;3 VARIABLE STRUCTURE DESIGN;384
19.4.4;4 CONCLUSION;385
19.4.5;APPENDIX;385
19.4.6;REFERENCES;386
19.5;CHAPTER 61. A DESIGN OF NONLINEAR MODEL REFERENCE ADAPTIVE CONTROL AND THE APPLICATION TO THE LINK MECHANISM;388
19.5.1;1. INTRODUCTION;388
19.5.2;2. DESIGN OF NONLINEAR MODEL FOLLOWING CONTROL SYSTEM;388
19.5.3;3. PROOF OF BOUNDEDNESS OF INTERNAL STATES;389
19.5.4;4. NONLINEAR MODEL REFERENCE ADAPTIVE CONTROL SYSTEM AND THE GLOBAL STABILITY;391
19.5.5;5. THE APPLICATION TO THE LINK MECHANISM;392
19.5.6;6. CONCLUSION;393
19.5.7;REFERENCES;393
19.6;CHAPTER 62. THE DESIGN AND APPLICATION OF EXPERT INTELLIGENCE CONTROL SYSTEM OF AUTOMATIC COMPENSATION EXPOSURE ENERGY;394
19.6.1;INTRODUCTION;394
19.6.2;THE DYNAMICAL MATHEMATICAL MODEL OF ACEE;394
19.6.3;OPTIMAL CONTROL POLICY OF ACEE;395
19.6.4;THE DESIGN OF COMPUTER CONTROL SYSTEM;397
19.6.5;CONCLUSION;397
19.6.6;REFERENCES;397
20;PART 16: ADAPTIVE CONTROL/KNOWLEDGE BASED CONTROL;400
20.1;CHAPTER 63. A DIRECT ADAPTIVE POLE ASSIGNMENT CONTROL SCHEME FOR NON NECESSARILY STABLY INVERTIBLE DISCRETE-TIME PLANTS;400
20.1.1;1. INTRODUCTION;400
20.1.2;2. PROBLEM STATEMENT;401
20.1.3;3. THE ADAPTIVE CONTROLLER;402
20.1.4;4. ROBUST STABILIZATION OF THE INVERSE CONTROL LAW W.R. TO V1;403
20.1.5;5. CONCLUSIONS;404
20.1.6;REFERENCES;404
20.2;CHAPTER 64. A SELF-TUNING FEEDFORWARD COMPENSATOR;406
20.2.1;INTRODUCTION;406
20.2.2;UNCOMPENSATED LOAD RESPONSE;407
20.2.3;FEEDFORWARD COMPENSATOR;408
20.2.4;SYSTEM IMPLEMENTATION;409
20.2.5;SIMULATION RESULTS;410
20.2.6;CONCLUSIONS;411
20.2.7;Acknowledgement;411
20.2.8;References;411
20.3;CHAPTER 65. MODEL REFERENCE ADAPTIVE CONTROL FOR NON-MINIMUM PHASE SYSTEM BY PERIODIC FEEDBACK;412
20.3.1;INTRODUCTION;412
20.3.2;PROBLEM STATEMENT;412
20.3.3;DESCRIPTION OF MULTIRATE SAMPLING SYSTEM;413
20.3.4;PERIODIC FEEDBACK;413
20.3.5;ADAPTIVE CONTROL BY PERIODIC FEEDBACK;414
20.3.6;SIMULATION RESULTS;416
20.3.7;CONCLUSION;416
20.3.8;References;416
20.4;CHAPTER 66. SMART SYNTHESIS OF A PID CONTROLLER;418
20.4.1;1. INTRODUCTION;418
20.4.2;2. PROBLEM DESCRIPTION;418
20.4.3;3. METHODS;419
20.4.4;4. SIMULATION RESULTS;422
20.4.5;5. CONCLUSIONS;423
20.4.6;REFERENCES;423
20.5;CHAPTER 67. KNOWLEDGE-BASED TUNING AND CONTROL;424
20.5.1;Abstract;424
20.5.2;1 Introduction;424
20.5.3;2 Motivation;425
20.5.4;3 The Unified Predictive Controller;425
20.5.5;4 Knowledge-based tuning;426
20.5.6;5 Implementation;427
20.5.7;6 Experiments;428
20.5.8;7 Conclusions;429
20.5.9;Acknowledgement;429
20.5.10;References;429
21;AUTHOR INDEX;430
22;KEYWORD INDEX;432



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.