E-Book, Englisch, Band Volume 22, 552 Seiten
Reihe: Methods in Neurosciences
De Kloet / Sutanto Neurobiology of Steroids
1. Auflage 2013
ISBN: 978-1-4832-8836-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 22, 552 Seiten
Reihe: Methods in Neurosciences
ISBN: 978-1-4832-8836-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Steroid hormones are unique compounds in that they are active at the interface of peripheral endocrine events and neural mechanisms. Thus their effects present an important peripheral signaling system to alter brain function. This volume presents state-of-the-art and classical techniques for the study of steroid hormones and their receptors and their effects and actions. - Comprehensive protocols included for the study of Steroid kinetics and metabolism - Steroid receptors - Molecular and cellular effects of steroids - Steroid effects on integrated systems
Autoren/Hrsg.
Weitere Infos & Material
1;Front cover;1
2;Neurobiology of Steroids;4
3;copyright Page;5
4;Table of Contents;6
5;Contributors to Volume 22;10
6;Preface;16
7;Methods in Neurosciences;18
8;Section I: Steroid Kinetics and Metabolism;20
8.1;Chapter [1]. Steroid Hormone Transport through Blood-Brain Barrier: Methods and Concepts
;22
8.1.1;Introduction;22
8.1.2;Blood-Brain Barrier Transport: Methodological Approaches;23
8.1.3;Major Determinants of Blood-Brain Barrier Transport of Steroid Hormones
;32
8.1.4;Steady State Model of Steroid Hormone Distribution in Brain;36
8.1.5;Concluding Remarks;38
8.1.6;Acknowledgment;39
8.1.7;References;39
8.2;Chapter
[2]. Enhanced Delivery of Steroids to the Brain Using a Redox-Based Chemical Delivery System;42
8.2.1;Introduction;42
8.2.2;Redox Methods for Brain-Enhanced Delivery of Steroids;42
8.2.3;Synthesis of Brain-Enhanced Estradiol-Chemical Delivery System;45
8.2.4;Distribution of Estradiol-Chemical Delivery System;45
8.2.5;Pharmacology;48
8.2.6;Concluding Remarks;52
8.2.7;Acknowledgments;53
8.2.8;References;53
8.3;Chapter [3]. Neurosteroids: Biosynthesis and Function
;55
8.3.1;Neurosteroids: A Brief History;56
8.3.2;Neurosteroid Metabolism in Brain;57
8.3.3;Mechanisms of Neurosteroid Action: Genomic Effects;60
8.3.4;Nongenomic, Membrane Receptor-Mediated Activities of Neurosteroids
;60
8.3.5;Neurosteroid Physiology;64
8.3.6;Concluding Remarks;66
8.3.7;Acknowledgments;67
8.3.8;References;67
8.4;Chapter [4]. Cytochrome P450 Enzymes in Brain
;70
8.4.1;Introduction;70
8.4.2;Quantitation and Subcellular Distribution of Brain P450;70
8.4.3;Detection of Specific Forms of P450 in Brain by Catalytic Activities;72
8.4.4;Arachidonic Acid Metabolism;75
8.4.5;Immunological Detection of Brain P450;75
8.4.6;Brain P450 Purification and Characterization;77
8.4.7;Detection of P450 mRNAS in Brain;77
8.4.8;Induction of Brain P450;78
8.4.9;Human Brain P450;80
8.4.10;General Conclusions;82
8.4.11;Acknowledgments;82
8.4.12;References;82
8.5;Chapter [5]. Methods for Estimating 11/ß-Hydroxysteroid Dehydrogenase Activity
;86
8.5.1;Introduction;86
8.5.2;Methods of Detecting 11/ß
-Hydroxysteroid Dehydrogenase Activity;87
8.5.3;Concluding Remarks;94
8.5.4;References;94
9;Section II: Steroid Receptors;96
9.1;Chapter [6]. Steroid Hormone Binding to Intracellular Receptors: In Vitro and in Vivo Studies
;98
9.1.1;Introduction;98
9.1.2;Cell Nuclear Retention of Corticosteroids;99
9.1.3;Binding Assay for Cytosolic Corticosteroid Receptors;103
9.1.4;References;113
9.2;Chapter [7]. Steroid Hormone Binding to Membrane Receptors
;115
9.2.1;Introduction;115
9.2.2;Criteria for Physiologically Relevant Receptors;116
9.2.3;Methods;117
9.2.4;Characterization of [3H]Corticosterone Binding to Amphibian Brain Membranes
;121
9.2.5;Concluding Remarks;130
9.2.6;Acknowledgments;133
9.2.7;References;133
9.3;Chapter [8]. In Vitro Autoradiography for Steroid Receptors
;135
9.3.1;Introduction;135
9.3.2;Estrogen Receptors;138
9.3.3;Corticosteroid, Androgen, and Progestin Receptors;148
9.3.4;Conclusions and Prospectus;156
9.3.5;Acknowledgments;159
9.3.6;References;159
9.4;Chapter [9]. Immunocytochemical Studies on Glucocorticoid Receptor
;162
9.4.1;Monoclonal Antibodies Demonstrate Glucocorticoid Receptor in Rat Central Nervous System
;162
9.4.2;Subcellular Distribution of Glucocorticoid Receptors;168
9.4.3;Glucocorticoid Receptors and Pain Mechanisms;173
9.4.4;Conclusions;176
9.4.5;Acknowledgments;178
9.4.6;References;178
9.5;Chapter [10]. Confocal Scanning Laser Microscopy of Steroid Receptors in Brain
;181
9.5.1;Introduction;181
9.5.2;Confocal Scanning Laser Microscopy;181
9.5.3;Immunolabeling for Confocal Scanning Laser Microscopy: Special Requirements
;182
9.5.4;Confocal Scanning Laser Microscopy of Steroid Receptors in Cultured Cells
;185
9.5.5;Confocal Scanning Laser Microscopy of Steroid Receptors in Brain Tissue
;187
9.5.6;Concluding Remarks;191
9.5.7;References;192
9.6;[11] Ultrastructural Aspects of Steroid Receptor Localization: Immunocytochemical Perspective
;194
9.6.1;Introduction;194
9.6.2;Preexperimental Considerations;194
9.6.3;Ultrastructural Detection of Glucocorticoid Receptor Immunoreactivity in Neural Tissue
;195
9.6.4;Ultrastructure of Estrogen Receptor-Immunoreactive Neural Elements;200
9.6.5;Concluding Remarks;205
9.6.6;Acknowledgments;206
9.6.7;References;206
9.7;Chapter [12]. Hybridization Studies of Adrenocorticosteroid Receptors in the Central Nervous System
;208
9.7.1;Introduction;208
9.7.2;Northern Blot Hybridization;209
9.7.3;In Situ Hybridization;209
9.7.4;Solution Hybridization: Nuclease Protection Assay;222
9.7.5;Concluding Remarks;227
9.7.6;Acknowledgments;227
9.7.7;References;228
9.8;Chapter [13]. Detection and Characterization of Epalon Receptors: Novel Recognition Sites for Neuroactive Steroids That Modulate the GABAA Receptor Complex
;230
9.8.1;GABAA Receptor Complex Active Neurosteroids;230
9.8.2;Methods of Detection of GABAA Receptor Complex-Active Epalons;232
9.8.3;Concluding Remarks;242
9.8.4;Acknowledgments;243
9.8.5;References;243
9.9;Chapter [14]. Mutation Analysis of Steroid Hormone Receptors
;245
9.9.1;Introduction;245
9.9.2;Mutational Analysis of Steroid Hormone Receptors;247
9.9.3;Concluding Remarks;258
9.9.4;References;258
10;Section III: Molecular Effects of Steroids;262
10.1;Chapter [15]. Protein-DNA-Binding Assay for Analysis of Steroid-Sensitive Neurons in Mammalian Brain
;264
10.1.1;Introduction;264
10.1.2;Methodology for Brain Tissue;265
10.1.3;Methodological Observations;270
10.1.4;Concluding Remarks;281
10.1.5;Acknowledgments;282
10.1.6;References;282
10.2;Chapter
[16]. Gene Transfection Studies Using Recombinant Steroid Receptors;284
10.2.1;Introduction;284
10.2.2;Transfection Strategies;285
10.2.3;Protocols for Transfections and Enzymatic Assays;288
10.2.4;Practical Approaches to Assay Gene Regulation by Nuclear Hormone Receptors
;293
10.2.5;Concluding Remarks;294
10.2.6;Acknowledgments;294
10.2.7;References;295
10.3;Chapter
[17]. Regulation of Neuropeptide Genes:Determination of Responsiveness to Steroids and Identification of Receptors in Brain Nuclei;296
10.3.1;Introduction;296
10.3.2;Determination of Steroid Responsiveness of Genes by Transient Transfection in Cell Lines
;297
10.3.3;Simultaneous Determination of Nuclear Hormone Receptor mRNA in Microdissected Brain Tissue
;305
10.3.4;Concluding Remarks;310
10.3.5;References;314
10.4;Chapter
[18]. Cloning of Steroid-Responsive mRNAs by Differential Hybridization;315
10.4.1;Introduction;315
10.4.2;In Vivo Glucocorticoid Treatment;315
10.4.3;Poly(A)-Containing RNA Isolation;317
10.4.4;Selection of XgtlO c\ Insertion Vector;318
10.4.5;Construction of Hippocampal cDNA Library;319
10.4.6;Screening cDNA Library by Differential Hybridization;324
10.4.7;Analysis of Cloned Corticosterone Responses;329
10.4.8;Concluding Remarks;330
10.4.9;Acknowledgments;331
10.4.10;References;331
10.5;Chapter
[19]. Molecular Correlates of Corticosterone Action in Hippocampal Subregions;333
10.5.1;Introduction;333
10.5.2;Methods;335
10.5.3;Results;341
10.5.4;Discussion;342
10.5.5;Acknowledgments;347
10.5.6;References;347
10.6;Chapter
[20]. Glucocorticoid-Determined Protein Synthesis;349
10.6.1;Introduction;349
10.6.2;Methodology;350
10.6.3;Concluding Remarks;358
10.6.4;Acknowledgments;359
10.6.5;References;359
10.7;Chapter
[21]. Use of Antisense Oligodeoxynucleotides to Block Gene Expression in Central Nervous System;361
10.7.1;Introduction;361
10.7.2;Designing Antisense Oligonucleotide;364
10.7.3;Delivery of Antisense Oligonucleotides;367
10.7.4;Controls and Nonspecific Effects;371
10.7.5;Concluding Remarks;373
10.7.6;References;374
11;Section IV: Cellular Efifects of Steroids;376
11.1;Chapter
[22]. Steroid Regulation of Neuronotrophic Activity: Primary Microcultures of Midbrain Raphe and Hippocampus;378
11.1.1;Introduction;378
11.1.2;Direct Effect of Steroids on Serotonergic Neurons;379
11.1.3;Steroid Action on Hippocampal Conditioned Medium;383
11.1.4;Steroid Action on Hippocampal Neurons;387
11.1.5;Concluding Remarks;389
11.1.6;References;389
11.2;Chapter
[23]. Central Glucocorticoid Receptors and Neuronal Plasticity;391
11.2.1;Introduction;391
11.2.2;Glucocorticoid Receptors and Growth Factors of Neuronal and Glial Origin
;391
11.2.3;Central Glucocorticoid Receptors and Prenatal Development;395
11.2.4;Central Glucocorticoid Receptors and Postnatal Development;395
11.2.5;Central Glucocorticoid Receptors and Aging Process;397
11.2.6;Summary;398
11.2.7;Acknowledgments;399
11.2.8;References;399
11.3;Chapter
[24]. Steroid Action on Neuronal Structure;402
11.3.1;Introduction;402
11.3.2;Golgi Impregnation;405
11.3.3;Concluding Remarks;419
11.3.4;Acknowledgments;420
11.3.5;References;420
11.4;Chapter
[25]. Electron Microscopie Double and Triple Labeling Immunocytochemistry in Elucidation of Synaptological Interactions between Ovarian Steroid-Sensitive Neuronsand Circuits;422
11.4.1;Introduction;422
11.4.2;Tissue Preparation;423
11.4.3;Double Immunostaining Techniques;426
11.4.4;Double Immunostaining Combined with Degeneration;447
11.4.5;Interconnections between Hypothalamic Steroid-Sensitive Circuits and LHRH Neurons
;450
11.4.6;Concluding Remarks;452
11.4.7;Acknowledgment;453
11.4.8;References;453
11.5;Chapter
[26]. Gene-Mediated Steroid Control of Neuronal Activity;456
11.5.1;Introduction;456
11.5.2;Electrophysiological Techniques;457
11.5.3;Timing Protocol;460
11.5.4;Application of Steroids;462
11.5.5;Future Developments;464
11.5.6;Concluding Remarks;466
11.5.7;References;466
11.6;Chapter [27]. Electrophysiological Studies of Neurosteroid Modulation of .-Aminobutyric Acid Type A Receptor
;467
11.6.1;Introduction;467
11.6.2;Choice of Preparation and Recording Technique;468
11.6.3;Cell Culture Techniques;471
11.6.4;Whole Cell and Single-Channel Recording: Practical Aspects;474
11.6.5;Applications of Techniques in Investigating Steroid Modulation of GABAA Receptors
;480
11.6.6;Concluding Remarks;486
11.6.7;Acknowledgment;487
11.6.8;References;487
11.7;Chapter
[28]. In Vitro Approaches to Studying Glucocorticoid Effects on Gene Expressionin Neurons and Glia;489
11.7.1;Introduction;489
11.7.2;Immunocytochemical Localization of Glucocorticoid and Mineralocorticoid Receptors in Hippocampal Neurons and Cerebral Astrocytes
;490
11.7.3;Expression of Glucocorticoid and Mineralocorticoid Receptor mRNAs in Cultured Neurons and Astrocytes
;492
11.7.4;Effects of Glucocorticoids on Gene Expression, Using Two-Dimensional Gel Electrophoresis
;493
11.7.5;Applications of in Vitro Systems;493
11.7.6;Procedures;494
11.7.7;Concluding Remarks;499
11.7.8;Acknowledgment;500
11.7.9;References;500
12;Section V: Steroid Effects on Integrated Systems;502
12.1;Chapter [29]. Behavioral Approaches to Study Function of Corticosteroids in Brain
;504
12.1.1;Introduction;504
12.1.2;Automated Computerized Registration of Behavior;505
12.1.3;General Preconsiderations for Behavioral Experiments on Effects of Corticosteroids
;506
12.1.4;Corticosteroid Receptors, Information Processing, and Spatial Behavior
;506
12.1.5;Concluding Remarks;515
12.1.6;Acknowledgment;515
12.1.7;References;516
12.2;Chapter [30]. Adrenocorticosteroids and Cardiovascular Regulation: Methods for Surgery and Blood Pressure Measurements
;517
12.2.1;Introduction;517
12.2.2;Rat Models of Mineralocorticoid Hypertension;518
12.2.3;Preparing Lateral Ventricular Cannulas and Catheters;519
12.2.4;Infusion Pumps and Solutions;520
12.2.5;Anesthesia and Surgery;520
12.2.6;Lateral Ventricular Cannulation;522
12.2.7;Nephrectomies, Adrenalectomies, and Adrenal Enucleations;523
12.2.8;Choice of Method to Measure Blood Pressure;524
12.2.9;Indirect Tail Plethysmography;525
12.2.10;Concluding Remarks;529
12.2.11;References;530
12.3;Chapter
[31]. Steroids and Central Regulationof Immune Response;531
12.3.1;Introduction;531
12.3.2;Control of Cytokine Gene Expression by Glucocorticoids;532
12.3.3;Concluding Remarks;542
12.3.4;References;543
12.4;Chapter [32]. Steroid Hormone Effects on Brain: Novel Insights Connecting Cellular and Molecular Features of Brain Cells to Behavior
;546
12.4.1;Introduction;546
12.4.2;Gene Expression in Brain in Light of Composite Response Elements
;547
12.4.3;Genomic and Nongenomic Effects of Steroids on Brain and Other Tissues
;548
12.4.4;Neurosteroids: Brain as a Source of Steroids;551
12.4.5;Steroid-Carrier Proteins and Blood-Brain Barrier;551
12.4.6;Importance of Steroid Metabolism and Compartmentation;552
12.4.7;Developmental Actions of Steroids;553
12.4.8;Structural Changes in Brain Not Confined to Development;556
12.4.9;Conclusions: Connecting Cellular and Molecular Aspects of Steroid Hormone Action to Behavior
;557
12.4.10;Acknowledgments;561
12.4.11;References;561
13;Index;564
14;Color Plate
;436
Contributors to Volume 22
Luigi F. Agnati, (9, 23), Department of Human Physiology, University of Modena, 41100 Modena, Italy Gunnar Akner, (9), Department of Medical Nutrition, Karoliska Institute, Novum F60, Huddinge University Hospital, S-141 86 Huddinge, Sweden Efrain C. Azmitia, (22), Department of Biology, New York University, New York, New York 10003 Etienne-Emile Baulieu, (3), INSERM U 33, Lab. Hormones, 94276 Le Kremlin-Bicêtre Cedex, France D. Belelli, (27), Department of Pharmacology and Clinical Pharmacology, University of Dundee, Nine wells Hospital and Medical School, Dundee DD1 9SY, Scotland Nicholas Bodor, (2), Center for Drug Discovery, University of Florida, Gainesville, Florida 32610 Debbie Bowlby, (8), Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada M5G 2C4 Theodore J. Brown, (8), Department of Obstetrics and Gynecology, The Toronto Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 2C4 J. Peter H. Burbach, (17), Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, 3508 TA Utrecht, The Netherlands Gerson Chadi, (23), Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden George P. Chrousos, (14), Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 Martha Churchill Bohn, (28), Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York 14642 Antonio Cintra, (9, 23), Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden Rafael Coveñas, (9), Depto de Biología Celular y Patología, 37007 Salamanca, Spain Joke J. Cox, (17), Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, 3508 TA Utrecht, The Netherlands Klaus Damm, (16), Pharmacological Research, Dr. Karl Thomae Gmb H, 88397 Biberach an der Riss, Germany Mercedes de León, (9), Depto de Biología Celular y Patología 37007 Salamanca, Spain Linda A. Dokas, (20), Departments of Neurology, Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, Ohio 43699 James H. Eberwine, (19), Department of Pharmacology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104 Caleb E. Finch, (18), Department of Biological Sciences, Andrus Gerontology Center, University of Southern California, Los Angeles, California 90089 Kjell Fuxe, (9, 23), Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden Elise P. Gómez-Sánchez, (30), Department of Internal Medicine, University of Missouri, and Harry S. Truman Veteran Affairs Hospital, Columbia, Missouri 65201 Kelvin W. Gee, (13), Department of Pharmacology, College of Medicine, University of California at Irvine, Irvine, California 92717 Elizabeth Gould, (24), Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021 Jan-Åke Gustafsson, (4, 9, 23), Department of Medical Nutrition, Karolinska Institute, Novum F60, Huddinge University Hospital, S-141 86 Huddinge, Sweden Wiljan Hendriks, (17), Department of Cell Biology and Histology, University of Nijmegen, Trigon, 6500 HB Nijmegen, The Netherlands James P. Herman, (12), Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, Kentucky 40536 C. Hill-Venning, (27), Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland Richard B. Hochberg, (8), Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06510 Tamas L. Horvath, (25), Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06510 Xiao Ping Hou, (22), Department of Biology, New York University, New York, New York 10003 Marian Joëls, (26), Department of Experimental Zoology, University of Amsterdam, 1098 SM Amsterdam, The Netherlands Imre Kalló, (11), Department of Anatomy, Albert Szent-Györgyi Medical University, H-6720 Szeged, Hungary Michael Karl, (14), Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 Zygmunt Krozowski, (5), Molecular Hypertension Laboratory, Baker Institute for Medical Research, Prahran, Melbourne, 3181 Victoria, Australia Seung P. Kwak, (12), Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109 J.J. Lambert, (27), Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland Csaba Leranth, (25), Department of Obstetrics and Gynecology, and Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510 Zsolt Liposits, (11), Department of Anatomy, Albert Szent-Györgyi Medical University, H-6720 Szeged, Hungary Sofia Lopes da Silva, (17), Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, 3508 TA Utrecht, The Netherlands Neil J. Maclusky, (8), Department of Obstetrics and Gynecology, The Toronto Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 2C4 Jeffrey N. Masters, (18), Ohio State Biotechnology Center, The Ohio State University, Columbus, Ohio 43210 Margaret M. Mccarthy, (21), Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201 Linda D. Mccauley, (13), Department of Pharmacology, College of Medicine, University of...